Skip to main content

Advertisement

Log in

Developing a thermal stress map of Iran through modeling a combination of bioclimatic indices

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Thermal stress poses significant direct and indirect risks to human health. Under climate change, both mean temperature and the frequency and intensity of extreme thermal stress events are projected to increase. Located within an arid to semi-arid region, Iran is anticipated to experience particularly intense temperature and humidity changes under climate change, potentially heightening the public health challenges associated with thermal stress. To facilitate improved adaptation to these thermal threats, accurate high spatial resolution thermal heat stress risk maps are important. This study combines various climate indices to produce such a thermal stress risk map for the reference period 1980–2010, with RCP4.5 projections for the period 2020–2049. Although the results of the various indices are statistically significantly correlated, each index returned a remarkably different spatial distribution and risk classification. Therefore, a fuzzy approach was followed through a geographical information system (GIS) to combine the results of the five bioclimatic indices and prepare a final thermal stress risk map. Based on the RCP4.5 scenario, the results indicate a notable 24.5% reduction in the areas susceptible to thermal stress at the high-risk and very high–risk levels, compared with the reference period. The lowest projected risk is for the central parts of Iran, while the southern and northern coasts of Iran were the zones of the highest risk, for which adaptation responses are most necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboubakri, O., Khanjani, N., Jahani, Y., & Bakhtiari, B. (2019). Attributable risk of mortality associated with heat and heat waves: a time-series study in Kerman, Iran during 2005–2017. Journal of Thermal Biology, 82, 76–82.

    Google Scholar 

  • Ahmadnezhad, E., HOLAKOUEI, N. K., Ardalan, A., MAHMOUDI, M., YOUNESIAN, M., Naddafi, K., & Mesdaghinia, A. R. (2013). Excess mortality during heat waves, Tehran Iran: an ecological time-series study. Journal of Research in Health Science., 13(1), 24–31.

    Google Scholar 

  • Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., & Tagipour, A. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research: Atmospheres., 111(D5).

  • Anbalagan, R., Kumar, R., Lakshmanan, K., Parida, S., & Neethu, S. (2015). Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters, 2, 6.

    Google Scholar 

  • Anderson, G. B., Bell, M. L., & Peng, R. D. (2013). Methods to calculate the heat index as an exposure metric in environmental health research. Environmental Health Perspectives., 121, 1111–1119.

    Google Scholar 

  • Barriopedro, D. E. M., Fischer, J., Luterbacher, J., Trigo, R. M., & Garcia-Herrera, R. (2011). The hot summer of 2010: redrawing the temperature record map of Europe. Science., 332, 220–224.

    CAS  Google Scholar 

  • Bedford, T., (1951). Equivalent temperature, what it is, how it’s measured. Heating, Piping. Air conditioning. Aug. p.87-91

  • Buscail, C., Upegui, E., & Viel, J. F. (2012). Mapping heatwave health risk at the community level for public health action. International Journal of Health Geographics, 11(1), 38.

    Google Scholar 

  • Chow, W. T. L., Snaba, A., Heng, S. L., & Roth, M. (2016). Assessment of measured and perceived microclimates within a tropical urban forest. Urban For Urban Green., 16, 62–75.

    Google Scholar 

  • Dadbakhsh, M., Khanjani, N., Bahrampour, A., & Haghighi, P. S. (2017). Death from respiratory diseases and temperature in Shiraz, Iran (2006–2011). International Journal of Biometeorology., 61(2), 239–246.

    Google Scholar 

  • Darand, M., Garcia-Herrera, R., Asakereh, H., Amiria, R., Barriopedrob, D. (2018) Synoptic conditions leading to extremely warm periods in Western Iran. International Journal of Climatology 38:307–319.

  • Dufton, A. F. (1932). Equivalent temperature and its measurement, B R Technical Paper 13. HMSO.

  • Dufton, A. F. (1933). The use of kata thermometers for the measurement of equivalent temperature. Journal of Hygiene, Camb, 33, 349.

    CAS  Google Scholar 

  • Feizizadeh, B., Roodposhti, M. S., Jankowski, P., & Blaschke, T. (2014). A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Computers & Geosciences., 73, 208–221.

    Google Scholar 

  • Ghanghermeh, A., Roshan, G., Orosa, J. A., Calvo-Rolle, J. L., & Costa, Á. M. (2013). New climatic indicators for improving urban sprawl: a case study of Tehran city. Entropy., 15, 999–1013.

    Google Scholar 

  • Ghanghermeh, A., Roshan, G., Orosa, J. A., & Costa, Á. M. (2019). Analysis and comparison of spatial–temporal entropy variability of Tehran city microclimate based on climate change scenarios. Entropy., 21, 13.

    Google Scholar 

  • Ghobadi, A., Khosravi, M., & Tavousi, T. (2018). Surveying of heat waves impact on the urban heat islands: case study, the Karaj City in Iran. Urban climate., 24, 600–615.

    Google Scholar 

  • Hejazizadeh, Z., & Karbalaee Doree, A. (2016). Introduction to thermal climate comfort and its indices. Tehran: Academic and Iranian geographical association publisher 468pp.

    Google Scholar 

  • Hirashima, S., Assis, E., & Nikolopoulou, M. (2016). Daytime thermal comfort in urban spaces: a field study in Brazil. Build. Environ., 107, 245–253.

    Google Scholar 

  • Hirashima, S., Katzschner, A., Ferreira, D., Assis, E., & Katzschner, L. (2018). Thermal comfort comparison and evaluation in different climates. Urban Climate, 23, 219–230.

    Google Scholar 

  • Ikäheimo, T. M. (2014). The effects of temperature on human health. Center for Environmental and Respiratory Health Research, WHO Collaborating Center in Global Change, Environment and Public health. Institute of Health Sciences. University of Oulu.

  • Ilanloo, M. (2011). A comparative study of fuzzy logic approach for landslide susceptibility mapping using GIS: an experience of Karaj dam basin in Iran. Procedia Social and Behavioral Sciences., 19, 668–676.

    Google Scholar 

  • Karandish, F., & Mousavi, S. S. (2018). Climate change uncertainty and risk assessment in Iran during twenty-first century: evapotranspiration and green water deficit analysis. Theoretical and Applied Climatology., 131, 777–791.

    Google Scholar 

  • Kourgialas, N. N., George, P., & Karatzas, G. P. (2011). Flood management and a GIS modelling method to assess flood-hazard areas—a case study. Hydrological Sciences Journal., 56(2), 212–225.

    Google Scholar 

  • Kovács, A., Unger, J., Gál, C. V., & Kántor, N. (2016). Adjustment of the thermal component of two tourism climatological assessment tools using thermal perception and preference surveys from Hungary. Theoretical and Applied Climatology., 125, 113–130.

    Google Scholar 

  • Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: a critical review. Annual Review of Public Health, 29, 41–55.

    Google Scholar 

  • Krüger, E., Rossi, F., & Drach, P. (2017). Calibration of the physiological equivalent temperature index for three different climatic regions. International Journal of Biometeorology., 1–14.

  • Lai, D., Guo, D., Hou, Y., Lin, C., & Chen, Q. (2014). Studies of outdoor thermal comfort in northern China. Build. Environ., 77, 110e118.

    Google Scholar 

  • Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, 52, 281–290.

    Google Scholar 

  • Luber, G., & McGeehin, M. (2009). Climate change and extreme heat events. American Journal of Preventative Medicine., 35(5), 429–435.

    Google Scholar 

  • Luterbacher, J., Werner, J. P., Smerdon, J. E., Fernández-Donado, L., González-Rouco, F. J., Barriopedro, D., Ljungqvist, F. C., Büntgen, U., Zorita, E., Wagner, S., & Esper, J. (2016). European summer temperatures since Roman times. Environmental Research Letters, 11(2), 024001.

    Google Scholar 

  • Mather, J. R. (1974). Climatology: fundamentals and application. USA: McGraw-Hill Book Company https://www.weather.gov/safety/heat-index. Accessed 18 November 2018.

    Google Scholar 

  • McCollor, D., & Stull, R. (2008). Hydrometeorological accuracy enhancement via post processing of numerical weather forecasts in complex terrain. Weather Forecast, 23, 131–144.

    Google Scholar 

  • Mckinnon, K. A., Rhines, A., Tingley, M. P., & Huybers, P. (2016). The changing shape of Northern Hemisphere summer temperature distributions. Journal of Geophysical Research, 121, 8849–8868.

    Google Scholar 

  • Mohd Din, M. F., Lee, Y. Y., Ponraj, M., Ossen, D. R., Iawo, K., & Chelliapan, S. (2014). Thermal comfort of various building layouts with a proposed discomfort index range for tropical climate. International Journal of Thermal Biology., 41, 6–15.

    Google Scholar 

  • Mora, C., Counsell, C. W., Bielecki, C. R., & Louis, L. V. (2017a). Twenty-seven ways a heat wave can kill you: deadly heat in the era of climate change. Circulation: Cardiovascular Quality and Outcomes, 10(11), e004233.

    Google Scholar 

  • Mora, C., Dousset, B., Caldwell, I. R., Powell, F. E., Geronimo, R. C., Bielecki, C. R., Counsell, C. W., Dietrich, B. S., Johnston, E. T., Louis, L. V., & Lucas, M. P. (2017b). Global risk of deadly heat. Nature Climate Change., 7(7), 501–506.

    Google Scholar 

  • Moustris, K. P., Proias, G. T., Larissi, I. K., Nastos, P. T., & Paliatsos, A. G. (2012). Bioclimatic and air quality conditions in the greater Athens area, Greece, during the warm period of the year: trends, variability and persistence. Fresenius Environmental Bulletin., 21, 2368–2374.

    CAS  Google Scholar 

  • Nikolova, V., & Zlateva, P. (2018). Geoinformation approach for complex analysis of multiple natural hazard. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, 2018 GeoInformation For Disaster Management (Gi4DM), 18–21 March 2018, Istanbul, Turkey

  • Nikolova, V., & Zlateva, P. (2019). Complex geoinformation analysis of multiple natural hazards using fuzzy logic. In O. Altan, M. Chandra, F. Sunar, & T. Tanzi (Eds.), Intelligent Systems for Crisis Management, Gi4DM 2018. Lecture Notes in Geoinformation and Cartography. Cham: Springer.

    Google Scholar 

  • Parak, F., Roshani, A., & Jamali, J. B. (2015). Trends and anomalies in daily climate extremes over Iran during 1961–2010. Journal of Environmental and Agricultural Sciences, 2(11), 1–17.

    Google Scholar 

  • Rahimi, J., Ebrahimpour, M., & Khalili, A. (2013). Spatial changes of extended De Martonne climatic zones affected by climate change in Iran. Theoretical and Applied Climatology., 112, 409–418.

    Google Scholar 

  • Roshan, G., & Nastos, P. T. (2018). Assessment of extreme heat stress probabilities in Iran’s urban settlements, using first order Markov chain model. Sustainable Cities and Society, 36, 302–310.

    Google Scholar 

  • Roshan, G. R., Yousefi, R., & Fitchett, J. (2016). Long-term trends in tourism climate index scores for 40 stations across Iran: the role of climate change and influence on tourism sustainability. International Journal of Biometeorology., 60, 33–52.

    Google Scholar 

  • Roshan, G. R., Yousefi, R., Kovács, A., & Matzarakis, A. (2018a). A comprehensive analysis of physiologically equivalent temperature changes of Iranian selected stations for the last half century. Theoretical and Applied Climatology., 131, 19–41.

    Google Scholar 

  • Roshan, G., Ghanghermeh, A., & Grab, S. W. (2018b). Testing a new application for TOPSIS: monitoring drought and wet periods in Iran. Theoretical and Applied Climatology, 131, 557–571.

    Google Scholar 

  • Roshan, G., Saleh Almomenin, H., Hirashima, S., & Attia, S. (2019). Estimate of outdoor thermal comfort zones for different climatic regions of Iran. Urban Climate, 27, 8–23.

    Google Scholar 

  • Roshan, G., Grab, S.W. & Najafi, M.S. (2020). The role of physical geographic parameters affecting past (1980–2010) and future (2020–2049) thermal stress in Iran. Nat Hazards 102, 365–399.

  • Salata, F., Golasi, I., Vollaro, R. L., & Vollaro, A. L. (2016). Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Building and Environment, 96, 46e61.

    Google Scholar 

  • Shannon, C. E. (1948) A mathematical theory of communication. Bell Labs Technical Journal, 27, 379–423.

  • Siple, P. A., & Passel, C. F. (1945). Measurements of dry atmospheric cooling in subfreezing temperatures. Proceedings of the American Philosophical Society, 89, 177–199.

    Google Scholar 

  • Soori, S., & Baharvand, S. (2016). Landslide hazard zonation using fuzzy logic and density area model (case study: Kakasheraf Basin, Southwest Khorramabad). Journal of Engineering Geology., 9(4), 3093–3112.

    Google Scholar 

  • Steadman, R. G. (1984). A universal expression of apparent temperature. Journal of Applied Meteorology, 23, 1674–1687.

    Google Scholar 

  • Stott, P. A., Stone, D. A., & Allen, M. R. (2004). Human contribution to the European heatwave of 2003. Nature., 432, 610–614.

    CAS  Google Scholar 

  • Thom, E. C. (1959). The discomfort index. Weatherwise., 12, 57–60.

    Google Scholar 

  • Tonouchi, M., Murayama, K., & Ono, M. (2006). WBGT forecast for prevention of heat stroke in Japan. Sixth Symposium on the Urban Environment. American Meteorological Society. Section PJ1.1

  • Turkes, M., Turp, M. T., An, N., Ozturk, T., & Kurnaz, M. L. (2020). Impacts of climate change on precipitation climatology and variability in Turkey. In N. Harmancioglu & D. Altinbilek (Eds.), Water Resources of Turkey. World Water Resources (Vol. 2). Cham: Springer.

    Google Scholar 

  • Tzenkova, A. S., Kandjov, I. M., & Ivancheva, J. N. (2003). Some biometeorological aspects of urban climate in Sofia. In Proceedings of Fifth International Conference on Urban Climate, Lodz, Poland, Vol. 2 (pp. 103–106).

    Google Scholar 

  • Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D., & Seneviratne, S. I. (2019). Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change. Earth’s Future., 7, 692–703.

    CAS  Google Scholar 

  • World Meteorological Organisation (WMO). (2019). July matched, and maybe broke, the record for the hottest month since analysis began, Published 1 August 2019. Retrieved from https://public.wmo.int/en/media/news/july-matched-and-maybe-broke-record-hottest-month-analysis-began.

  • Yahia, M. W., & Johansson, E. (2013). Evaluating the behaviour of different thermal indices by investigating various outdoor urban environments in the hot dry city of Damascus, Syria. International Journal of Biometeorology., 57, 615–630.

    Google Scholar 

  • Yu, Z., & Li, X. (2015). Recent trends in daily temperature extremes over northeastern China (1960-2011). Quaternary International., 380-381, 35–35.

    Google Scholar 

  • Zare, S., Shirvan, H. E., Hemmatjo, R., Nadri, F., Jahani, Y., Jamshidzadeh, K., Paydar, P. (2019). A comparison of the correlation between heat stress indices (UTCI, WBGT, WBDT, TSI) and physiological parameters of workers in Iran. Weather and Climate Extremes 26, 100213. https://doi.org/10.1016/j.wace.2019.100213

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Roshan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshan, G., Faghani, M. & Fitchett, J.M. Developing a thermal stress map of Iran through modeling a combination of bioclimatic indices. Environ Monit Assess 192, 549 (2020). https://doi.org/10.1007/s10661-020-08503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08503-y

Keywords

Navigation