Skip to main content
Log in

On Grids in Point-Line Arrangements in the Plane

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

The famous Szemerédi–Trotter theorem states that any arrangement of n points and n lines in the plane determines \(O(n^{4/3})\) incidences, and this bound is tight. In this paper, we prove the following Turán-type result for point-line incidence. Let \(\mathcal {L}_a\) and \(\mathcal {L}_b\) be two sets of t lines in the plane and let \(P=\{\ell _a \cap \ell _b : \ell _a \in \mathcal {L}_a, \,\ell _b \in \mathcal {L}_b\}\) be the set of intersection points between \(\mathcal {L}_a\) and \(\mathcal {L}_b\). We say that \((P, \mathcal {L}_a \cup \mathcal {L}_b)\) forms a natural \(t\times t\) grid if \(|P| =t^2\), and \({\text {conv}}P\) does not contain the intersection point of some two lines in \(\mathcal {L}_a\) and does not contain the intersection point of some two lines in \(\mathcal {L}_b\). For fixed \(t > 1\), we show that any arrangement of n points and n lines in the plane that does not contain a natural \(t\times t\) grid determines \(O(n^{{4}/{3}- \varepsilon })\) incidences, where \(\varepsilon = \varepsilon (t)>0\). We also provide a construction of n points and n lines in the plane that does not contain a natural \(2 \times 2\) grid and determines at least \(\Omega ({n^{1+{1}/{14}}})\) incidences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aronov, B., Erdős, P., Goddard, W., Kleitman, D.J., Klugerman, M., Pach, J., Schulman, L.J.: Crossing families. Combinatorica 14(2), 127–134 (1994)

    Article  MathSciNet  Google Scholar 

  2. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)

    MATH  Google Scholar 

  3. Bukh, B., Hubard, A.: Space crossing numbers. Comb. Probab. Comput. 21(3), 358–373 (2012)

    Article  MathSciNet  Google Scholar 

  4. Cilleruelo, J., Timmons, C.: \(k\)-fold Sidon sets. Electron. J. Comb. 21(4), # 4.12 (2014)

    Article  MathSciNet  Google Scholar 

  5. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math. 51, 161–166 (1950)

    Article  MathSciNet  Google Scholar 

  6. Dujmović, V., Langerman, S.: A center transversal theorem for hyperplanes and applications to graph drawing. Discrete Comput. Geom. 49(1), 74–88 (2013)

    Article  MathSciNet  Google Scholar 

  7. Erdös, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related problems. J. Lond. Math. Soc. 16(4), 212–215 (1941)

    Article  MathSciNet  Google Scholar 

  8. Fox, J., Gromov, M., Lafforgue, V., Naor, A., Pach, J.: Overlap properties of geometric expanders. J. Reine Angew. Math. 671, 49–83 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Fox, J., Pach, J., Suk, A.: A polynomial regularity lemma for semialgebraic hypergraphs and its applications in geometry and property testing. SIAM J. Comput. 45(6), 2199–2223 (2016)

    Article  MathSciNet  Google Scholar 

  10. Kövari, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)

    Article  Google Scholar 

  11. Lazebnik, F., Verstraëte, J.: On hypergraphs of girth five. Electron. J. Comb. 10, # 25 (2003)

    Article  MathSciNet  Google Scholar 

  12. Matoušek, J.: Efficient partition trees. Discrete Comput. Geom. 8(3), 315–334 (1992)

    Article  MathSciNet  Google Scholar 

  13. Pach, J., Agarwal, P.K.: Combinatorial Geometry. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1995)

    Google Scholar 

  14. Ruzsa, I.Z.: Solving a linear equation in a set of integers I. Acta Arithmetica 65(3), 259–282 (1993)

    Article  MathSciNet  Google Scholar 

  15. Solymosi, J.: Dense arrangements are locally very dense. I. SIAM J. Discrete Math. 20(3), 623–627 (2006)

    Article  MathSciNet  Google Scholar 

  16. Suk, A., Tomon, I.: Hasse diagrams with large chromatic number (2020). arXiv:2001.09901

  17. Szemerédi, E., Trotter Jr., W.T.: Extremal problems in discrete geometry. Combinatorica 3(3–4), 381–392 (1983)

    Article  MathSciNet  Google Scholar 

  18. Verstraëte, J.: Extremal problems for cycles in graphs. In: Recent Trends in Combinatorics. IMA Vol. Math. Appl., vol. 159, pp. 83–116. Springer, Cham (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozhgan Mirzaei.

Additional information

Editor in Charge: János Pach

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mozhgan Mirzaei: Supported by NSF Grant DMS-1800746. Andrew Suk: Supported by an NSF CAREER award and an Alfred Sloan Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, M., Suk, A. On Grids in Point-Line Arrangements in the Plane. Discrete Comput Geom 65, 1232–1243 (2021). https://doi.org/10.1007/s00454-020-00231-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-020-00231-x

Navigation