Skip to main content
Log in

Molecular Packing of a Mutant of L-Asparaginase from Wolinella succinigenes in Two Crystal Modifications

  • STRUCTURE OF MACROMOLECULAR COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The apo form of the double mutant of Wolinella succinogenes L-asparaginase (WAS) with V23Q and K24T substitutions in the flexible N-terminal loop (WASm), which exhibits an order of magnitude lower glutaminase activity compared to the wild-type enzyme, was crystallized in two modifications (sp. grs. P22121 and P21). The three-dimensional structure in two modifications was determined at 1.5 and 1.7 Å resolution, respectively. The three-dimensional structures and the molecular packing modes of the enzyme in two crystal modifications (monoclinic, sp. gr. P21, and orthorhombic, sp. gr. P22121) are compared. Intermolecular contacts and solvent channels in both crystal lattices are described. The orthorhombic crystals have a closer packing compared to the monoclinic crystals and lower water content (36.95 and 44.53%, respectively). However, the active sites in both structures are solvent accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. B. Howard and F. J. Carpenter, J. Biol. Chem. 217, 1020 (1972).

    Google Scholar 

  2. J. Lubkowski, A. Wlodawer, H. L. Ammon, et al., Biochemistry 33, 10257 (1994).

    Article  Google Scholar 

  3. J. Lubkowski, A. Wlodawer, D. Housset, et al., Acta Crystallogr. D 50, 826 (1994).

    Article  Google Scholar 

  4. J. D. Broom, J. Exp. Med. 127, 1055 (1968).

    Article  Google Scholar 

  5. K. H. Rohm and R. L. Van Etten, Arch. Biochem. Biophys. 244, 128 (1986).

    Article  Google Scholar 

  6. J. H. Parmentier, M. Maggi, E. Tarasco, et al., Leuk. Res. 39, 757 (2015).

    Article  Google Scholar 

  7. R. P. Warrell, T. C. Chou, C. Gordon, et al., Cancer Res. 40, 4546 (1980).

    Google Scholar 

  8. N. Patel, S. Krishnan, M. N. Offman, et al., J. Din. Invest. 119, 1964 (2009).

    Google Scholar 

  9. G. A. Kotzia, K. Lappa, and N. E. Labrou, Biochem. J. 404, 337 (2007).

    Article  Google Scholar 

  10. M. N. Offman, M. Krol, N. Patel, et al., Blood 117, 1614 (2011).

    Article  Google Scholar 

  11. J. A. Distasio and R. A. Niederman, J. Biol. Chem. 251, 6929 (1976).

    Google Scholar 

  12. J. A. Distasio, R. A. Niederman, and D. Kafkewitz, Exp. Biol. Med. 155, 528 (1977).

    Article  Google Scholar 

  13. J. A. Distasio, A. M. Salazar, M. Nadji, and D. L. Durden, Int. J. Cancer 30, 343 (1982).

    Article  Google Scholar 

  14. J. Lubkowski, G. J. Palm, G. L. Gilliland, et al., Eur. J. Biochem. 241, 201 (1996).

    Article  Google Scholar 

  15. R. B. Reinert, L. M. Oberle, S. A. Wek, et al., J. Biol. Chem. 281, 31222 (2006).

    Article  Google Scholar 

  16. D. L. Durden and J. A. Distasio, Cancer Res. 40, 1125 (1980).

    Google Scholar 

  17. D. L. Durden and J. A. Distasio, Int. J. Cancer 27, 59 (1981).

    Article  Google Scholar 

  18. H. van den Berg, Leuk. Lymphoma 52, 168 (2011).

    Article  Google Scholar 

  19. D. Covini, S. Tardito, O. Bussolati, et al., Recent Pat. Anti-Cancer Drug Discovery 7, 4 (2012).

    Article  Google Scholar 

  20. A. Shrivastava, A. A. Khan, M. Khurshid, et al., Critical Rev. Oncol./Hematol. 100, 1 (2015).

    Article  Google Scholar 

  21. E. P. Sannikova, N. V. Cheperegin. S. E. Bulushova, et al., Mol. Biotechnol. 58, 528 (2016). https://doi.org/10.1007/s12033

    Article  Google Scholar 

  22. V. I. Timofeev, N. E. Zhukhlistova, and I. P. Kuranova, Bioorgan. Khim. 46, 140 (2020).

    Google Scholar 

  23. V. I. Timofeev, N. V. Bulushova, N. E. Zhukhlistova, and I. P. Kuranova, Crystallogr. Rep. 64 (6), 910 (2019).

    Article  ADS  Google Scholar 

  24. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, et al., J. Appl. Crystallogr. 40, 658 (2007).

    Article  Google Scholar 

  25. G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Acta Crystallogr. D 53, 240 (1997).

    Article  Google Scholar 

  26. P. Emsley and K. Cowtan, Acta Crystallogr. D 60, 2126 (2004).

    Article  Google Scholar 

  27. Collaborative Computational Project No. 4 “The CCP4 Suite: Programs for Protein Crystallography,” Acta Crystallogr. D 50, 760 (1994).

  28. E. Krissinel and K. Henrick, J. Mol. Biol. 372, 774 (2007).

    Article  Google Scholar 

  29. L. L. C. Schrödinger, The PyMOL Molecular Graphics System, Version 1.8 (2015).

  30. B. W. Matthews, J. Mol. Biol. 33, 491 (1968).

    Article  Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the state assignment of the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Kuranova.

Additional information

Translated by T. Safonova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timofeev, V.I., Zhukhlistova, N.E. & Kuranova, I.P. Molecular Packing of a Mutant of L-Asparaginase from Wolinella succinigenes in Two Crystal Modifications. Crystallogr. Rep. 65, 586–592 (2020). https://doi.org/10.1134/S1063774520040227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520040227

Navigation