Skip to main content
Log in

Theory of the Laue Diffraction of X Rays in a Thick Single Crystal with an Inclined Step on the Exit Surface. I: Numerical Solution

  • DIFFRACTION AND SCATTERING OF IONIZING RADIATIONS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A method for computing the Laue diffraction of an X-ray spherical wave in a single crystal with an inclined step on the exit surface has been developed. The method is based on the use of two approaches to solving the problem: Fourier transformation of the wave function angular dependence in the case of a plane wave incident on a plate-shaped crystal and a numerical solution of the Takagi equations in the step area, where the diffraction parameters depend on the coordinate along the crystal surface. The effect of strong increase in the reflected-beam intensity (by a factor of more than 7 in the maxima) in the transition area, if the step boundary makes a smaller angle with the reflected-beam direction, is predicted based on the numerical calculations. The dependence of the effect on the step-boundary inclination angle is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Kato and A. R. Lang, Acta Crystallogr. 12, 787 (1959).

    Article  Google Scholar 

  2. N. Kato, Acta Crystallogr. 14, 526 (1961);

    Article  Google Scholar 

  3. Acta Crystallogr. 14, 627 (1961).

  4. N. Kato, J. Appl. Phys. 39, 2225 (1968).

    Article  ADS  Google Scholar 

  5. S. Takagi, Acta Crystallogr. 15, 1311 (1962).

    Article  Google Scholar 

  6. I. Sh. Slobodetskii, F. N. Chukhovskii, and V. L. Indenbom, Pis’ma Zh. Eksp. Teor. Fiz. 8, 90 (1968).

    Google Scholar 

  7. T. S. Uragami, J. Phys. Soc. Jpn. 27, 147 (1969).

    Article  ADS  Google Scholar 

  8. T. S. Uragami, J. Phys. Soc. Jpn. 28, 1508 (1970).

    Article  ADS  MathSciNet  Google Scholar 

  9. T. S. Uragami, J. Phys. Soc. Jpn. 31, 1141 (1971).

    Article  ADS  Google Scholar 

  10. A. M. Afanas’ev and V. G. Kohn, Acta Crystallogr. A 27, 421 (1971).

    Article  ADS  Google Scholar 

  11. T. Saka, T. Katagawa, and N. Kato, Acta Crystallogr. A 28, 102 (1972).

    Article  ADS  Google Scholar 

  12. T. Saka, T. Katagawa, and N. Kato, Acta Crystallogr. A 28, 113 (1972).

    Article  ADS  Google Scholar 

  13. A. M. Afanas’ev and V. G. Kohn, Fiz. Tverd. Tela 19, 1775 (1977).

    Google Scholar 

  14. V. G. Kohn, Kristallografiya 24 (4), 712 (1979).

    Google Scholar 

  15. V. G. Kohn, I. Snigireva, and A. Snigirev, Phys. Status Solidi B 222, 407 (2000).

    Article  ADS  Google Scholar 

  16. V. V. Aristov, V. I. Polovinkina, I. M. Shmyt’ko, and E. V. Shulakov, Pis’ma Zh. Eksp. Teor. Fiz. 28, 6 (1978).

    Google Scholar 

  17. V. V. Aristov, V. I. Polovinkina, A. M. Afanas’ev, and V. G. Kohn, Acta Crystallogr. A 36, 1002 (1980).

    Article  ADS  Google Scholar 

  18. V. V. Aristov, V. G. Kohn, V. I. Polovinkina, and A. A. Snigirev, Phys. Status Solidi A 72, 483 (1982).

    Article  ADS  Google Scholar 

  19. V. D. Koz’mik and I. P. Mikhailyuk, Pis’ma Zh. Eksp. Teor. Fiz. 28, 673 (1978).

    Google Scholar 

  20. Y. Epelboin, Acta Crystallogr. A 33, 758 (1977).

    Article  ADS  Google Scholar 

  21. A. Authier, Dynamical Theory of X-ray Diffraction (Oxford Univ. Press, New York, 2001).

    MATH  Google Scholar 

  22. N. M. Olekhnovich and A. I. Olekhnovich, Acta Crystallogr. A 34, 321 (1978).

    Article  ADS  Google Scholar 

  23. N. M. Olekhnovich and A. I. Olekhnovich, Acta Crystallogr. A 36, 22 (1980).

    Article  ADS  Google Scholar 

  24. D. K. Saldin, Acta Crystallogr. A 38, 425 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  25. T. S. Uragami, J. Phys. Soc. Jpn. 52, 3073 (1983).

    Article  ADS  Google Scholar 

  26. E. V. Shulakov, I. A. Smirnova, and E. V. Suvorov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 7, 32 (1996).

  27. V. I. Punegov, S. I. Kolosov, and K. M. Pavlov, J. Appl. Crystallogr. 49, 1190 (2016).

    Article  Google Scholar 

  28. A. G. Shabalin, O. M. Yefanov, V. L. Nosik, et al., Phys. Rev. B 96, 064111 (2017).

    Article  ADS  Google Scholar 

  29. V. G. Kohn and I. A. Smirnova, Crystallogr. Rep. 65 (4), 515 (2020).

  30. V. G. Kohn, J. Synchrotron Radiat. 25, 1634 (2018).

    Article  Google Scholar 

  31. Z. G. Pinsker, Dynamical Scattering of X-Rays in Crystals (Springer, Berlin, 1978).

    Book  Google Scholar 

  32. V. G. Kohn, Phys. Status Solidi B 231, 132 (2002).

    Article  ADS  Google Scholar 

  33. http://kohnvict.ucoz.ru/jsp/3-difpar.htm.

  34. http://kohnvict.ucoz.ru/acl/acl.htm.

  35. https://www.nag.co.uk/content/nag-library-fortran.

  36. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).

    Article  ADS  Google Scholar 

  37. V. G. Kohn and I. A. Smirnova, Acta Crystallogr. A 74, 699 (2018).

    Article  Google Scholar 

  38. V. G. Kohn and I. A. Smirnova, Phys. Status Solidi B 257, 1900441 (2020).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Smirnova.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohn, V.G., Smirnova, I.A. Theory of the Laue Diffraction of X Rays in a Thick Single Crystal with an Inclined Step on the Exit Surface. I: Numerical Solution. Crystallogr. Rep. 65, 508–514 (2020). https://doi.org/10.1134/S1063774520040112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520040112

Navigation