Skip to main content
Log in

Application of X-Ray Methods for Determining the Dimensions of Nanoparticles in the Nanosized Anatase–Poly(N-vinylcaprolactam) System

  • NANOMATERIALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Nanocomposites prepared by mechanical mixing with grinding and mechanical activation of a mixture of Hombifine N with nanosized anatase (NA) and poly(N-vinylcaprolactam) (PVCL) polymer (PVCL25 and PVCL40 polymers were obtained by drying a PVC aqueous solution at 25 and 40°C, respectively) in different weight ratios have been studied by wide-angle X-ray scattering (WAXS) and (for the first time) small-angle X-ray scattering (SAXS). Amorphization of anatase (decrease in the average size of the coherent-scattering region), selection of X-ray amorphous hydrated titanium dioxide from the amorphous shell of anatase nanoparticles, destruction of PVCL, and disordering of its heterocycles in NA/PVCL (NA : PVCL = 1 : 1) nanocomposites upon mechanical activation have been revealed. The interaction (with water molecule exchange) between anatase, anatase, and PVCL nanoparticles during formation of NA/PVCL25 (NA : PVCL = 1 : 2) upon mechanical mixing with grinding is found to lead to segregation of anatase nanoparticles into two groups: particles with reduced and enhanced (formation of texture) degree of crystallinity (average sizes of coherent-scattering regions) in comparison with the initial anatase. SAXS made it possible to reveal structural inhomogeneities of different sizes in PVCL25 and PVCL40, which change differently upon mechanical activation, retaining the tendency to smaller sizes in PVCL25 (a coil) in comparison with PVCL40 (a globule). It is shown that the effects of mechanical activation and mechanical mixing with grinding on the components of NA–PVCL system differ, and that anatase nanoparticles play a decisive role in NA/PVCL nanocomposites, facilitating averaging of the inhomogeneity sizes upon mechanical activation. The results of studying the photocatalytic activity in the reaction of methyl orange decomposition (UV irradiation) in the presence of NA–PVCL samples indicate that it depends on the average sizes of coherent-scattering regions and is independent of the inhomogeneity sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Newnham and J. F. Fernandez, Proc. Third European Ceramic Society Conference (Third Euro-Ceramics), Madrid, September 12‒17,1993 (Faenza Editrice Iberica, Madrid, 1993), Vol. 2, p. 1.

  2. H. Gleiter, J. Weissmüller, O. Wollersheim, and R. Würschum, Acta Mater. 49 (4), 737 (2001).

    Article  Google Scholar 

  3. J. D. Joannopoulos, Nature 414, 257 (2001).

    Article  ADS  Google Scholar 

  4. H. Miguez, A. Blanco, C. Lopez, et al., J. Lightwave Technol. 17 (11), 1975 (1999).

    Article  ADS  Google Scholar 

  5. G. M. Kuz’micheva, Tonkie Khim. Tekhnol. 10 (6), 5 (2015).

    Google Scholar 

  6. Yu. E. Kirsh, T. M. Karaputadze, V. I. Shumskii, et al., RF Patent No. 1613446, MPK C08F 126/06, 2/46 (July 1, 1988), Byull. Izobret., 1990, no. 46 (December 15, 1990).

  7. I. P. Chikhacheva, O. I. Timaeva, G. M. Kuz’micheva, et al., Crystallogr. Rep. 61 (3), 421 (2016).

    Article  ADS  Google Scholar 

  8. O. Timaeva, I. Chihacheva, G. Kuzmicheva, et al., J. Mater. Res. 33 (10), 1475 (2018).

    Article  ADS  Google Scholar 

  9. G. M. Kuz’micheva, V. V. Podbel’skii, A. N. Stepanov, and A. A. Gainanova, Program for Processing Diffraction Patterns from Nanoscale and Amorphous Materials and Calculation of Substructure Characteristics. Government Registration Certificate for computer program No. 2017610699.

  10. G. S. Peters, O. A. Zakharchenko, P. V. Konarev, et al., Nucl. Instrum. Methods Phys. Res. A 945, 162616 (2019).

    Article  Google Scholar 

  11. T. C. Huang, H. Toraya, T. N. Blanton, et al., J. Appl. Crystallogr. 26 (2), 180 (1993).

    Article  Google Scholar 

  12. A. P. Hammersley, FIT2D: An Introduction and Overview. ESRF Internal Report (1997).

  13. P. V. Konarev, V. V. Volkov, A. V. Sokolova, et al., J. Appl. Crystallogr. 36, 1277 (2003).

    Article  Google Scholar 

  14. P. V. Konarev, M. V. Petoukhov, V. V. Volkov, et al., J. Appl. Crystallogr. 39, 277 (2006).

    Article  Google Scholar 

  15. M. V. Petoukhov, D. Franke, A. V. Shkumatov, et al., J. Appl. Crystallogr. 45, 342 (2012).

    Article  Google Scholar 

  16. D. I. Svergun, J. Appl. Crystallogr. 25, 495 (1992).

    Article  Google Scholar 

  17. D. I. Svergun, E. V. Shtykova, V. V. Volkov, et al., Crystallogr. Rep. 56 (5), 725 (2011).

    Article  ADS  Google Scholar 

  18. E. W. Fischer, J. H. Wendorff, M. Dettermaier, et al. J. Macromol. Sci. Phys. B 12, 41 (1976).

    Article  ADS  Google Scholar 

  19. A. A. Gainanova, G. M. Kuz'micheva, and I. G. Vasil’eva, Izv. Akad. Nauk, Ser. Khim., No. 8, 1350 (2018).

  20. M. Dadachov, U.S. Patent Application Publication 2006/0171877 A1 (2006).

  21. J. Teng, S. Bates, D. A. Engers, et al., J. Pharm. Sci. 99, 3815 (2010).

  22. Guettai and H. A. Amar, Desalination 185, 427 (2005).

  23. O. Timaeva, V. Chernyshev, G. Kuz’micheva, et al., J. Nanosci. Nanotechnol. 19, 762 (2019).

    Article  Google Scholar 

  24. P. Scherrer, Göttinger Nachrichten Gesell. 2, 98 (1918).

    Google Scholar 

  25. W. H. Hall, Proc. Phys. Soc. (London) 62, 741 (1949).

    Article  ADS  Google Scholar 

  26. M. Dusek, V. Petricek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014).

    Google Scholar 

  27. A. V. Zhilkina, A. A. Gordienko, N. A. Prokudina, et al., Russ. J. Phys. Chem. A 87 (4), 674 (2013).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 4.1069.2017/PCh; 2017–2019) and performed within the State assignment for the Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences in the part concerning the SAXS analysis of nanoparticle size distributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Timaeva.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulakov, S.P., Konarev, P.V., Timaeva, O.I. et al. Application of X-Ray Methods for Determining the Dimensions of Nanoparticles in the Nanosized Anatase–Poly(N-vinylcaprolactam) System. Crystallogr. Rep. 65, 631–640 (2020). https://doi.org/10.1134/S1063774520040161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520040161

Navigation