Skip to main content
Log in

Exponential Integral Representations of Theta Functions

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

Let \(\varTheta _{3} (z):= \sum \nolimits _{n\in \mathbb {Z}} \exp (\mathrm {i} \pi n^2 z)\) be the standard Jacobi theta function, which is holomorphic and zero-free in the upper half-plane \(\mathbb {H}:=\{z\in \mathbb {C}\,|\,\,\mathrm{{Im}}\, z>0\}\), and takes positive values along \( \mathrm {i} \mathbb {R}_{>0}\), the positive imaginary axis, where \(\mathbb {R}_{>0}:= (0, +\infty )\). We define its logarithm \(\log \varTheta _3(z)\) which is uniquely determined by the requirements that it should be holomorphic in \(\mathbb {H}\) and real-valued on \( \mathrm {i} \mathbb {R}_{>0}\). We derive an integral representation of \(\log \varTheta _{3} (z)\) when z belongs to the hyperbolic quadrilateral

$$\begin{aligned} \mathcal {F}^{\,{{{||}}}}_{{{{\square }}}}:= \big \{z\in \mathbb {C}\ \big | \ \,{\mathrm{{Im}}}\, z> 0, \,\,-1\le {\mathrm{{Re}}}\, z \le 1, \,\,|2 z\! -\! 1|> 1,\,\, | 2 z \!+\! 1|\! > 1\big \}. \end{aligned}$$

Since every point of \(\mathbb {H}\) is equivalent to at least one point in \(\mathcal {F}^{\,{{{||}}}}_{{{{\square }}}}\) under the theta subgroup of the modular group on the upper half-plane, this representation carries over in modified form to all of \(\mathbb {H}\) via the identity recorded by Berndt. The logarithms of the related Jacobi theta functions \(\varTheta _{4}\) and \(\varTheta _{2}\) may be conveniently expressed in terms of \(\log \varTheta _{3}\) via functional equations, and hence get controlled as well. Our approach is based on a study of the logarithm of the Gauss hypergeometric function for a specific choice of the parameters. This has connections with the study of the universally starlike mappings introduced by Ruscheweyh, Salinas, and Sugawa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions, National Bureau of Standarts. Appl. Math. Ser. 55, (1964)

  2. Agard, S.: Distortion theorems for quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I No. 413, pp. 12 (1968)

  3. Anderson, G. D., Vamanamurthy, M. K., Vuorinen, M. K.: Conformal invariants, inequalities, and quasiconformal maps. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, (1997)

  4. Andrews G., Askey, R., Roy, R.: Special functions. Encyclopedia of Mathematics and its Applications, 71. Cambridge University Press, Cambridge (1999)

  5. Bakan A., Hedenmalm H.: Exponential integral representations of theta functions, arXiv preprint, arXiv: 1912.10568v7 (2020)

  6. Bakan A., Ruscheweyh St., Salinas L.: Universally starlike and Pick functions. J. Anal. Math. (to appear), ArXiv preprint, arXiv:1804.03931 (2018)

  7. Bakan, A., Ruscheweyh, St, Salinas, L.: Universal convexity and universal starlikeness of polylogarithms. Proc. Am. Math. Soc. 143(2), 717–729 (2015)

    Article  MathSciNet  Google Scholar 

  8. Berg, Ch., Pedersen, H.: Nevanlinna matrices of entire functions. Math. Nachr. 171, 29–52 (1995)

    Article  MathSciNet  Google Scholar 

  9. Berndt B, Knopp, M.: Hecke’s theory of modular forms and Dirichlet series, Monographs in Number Theory, 5. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, (2008)

  10. Berndt, B.: Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303, 332–365 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Chandrasekharan, K.: Elliptic functions, Fundamental Principles of Mathematical Sciences, vol. 281. Springer-Verlag, Berlin (1985)

    Google Scholar 

  12. Conway J.: Functions of one complex variable. Second edition. Graduate Texts in Mathematics, 11, Springer-Verlag, New York-Berlin, (1978)

  13. Donoghue, W.: Monotone Matrix Functions and Analytic Continuation. Springer-Verlag, New York, Heidelberg, Berlin (1974)

    Book  Google Scholar 

  14. Duren P.: Univalent functions. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 259. Springer-Verlag, New York, Heidelberg, Berlin (1983)

  15. Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.: Higher transcendental functions, Vol. I., McGraw-Hill Book Company (1985)

  16. Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.: Tables of integral transforms. Vol. I., McGraw-Hill Book Company, Inc., New York-Toronto-London, (1954)

  17. Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.: Tables of integral transforms. Vol. II. McGraw-Hill Book Company, Inc., New York-Toronto-London, (1954)

  18. Garnett, J.: Bounded analytic functions. Academic Press, New York (1981)

    MATH  Google Scholar 

  19. Hayman W., Kennedy P.: Subharmonic functions, Vol. I, London Mathematical Society Monographs, No. 9. Academic Press, London-New York (1976)

  20. Koosis, P.: Introduction to \(H^{p}\) spaces, Cambridge Tracts in Mathematics, vol. 115. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  21. Küstner, R.: Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order \(\alpha \). Comput. Methods Funct. Theory 2(2), 597–610 (2002)

    Article  MathSciNet  Google Scholar 

  22. Lang, S.: Complex analysis, Fourth edition, Graduate Texts in Mathematics, 103. Springer-Verlag, New York (1999)

    Google Scholar 

  23. Lawden D.: Elliptic Functions and Applications, Applied Math. Sci. 80. Springer-Verlag, New York (1980)

  24. Lawrentjew, M., Schabat, B.: Methoden der komplexen Funktionentheorie, Mathematik für Naturwissenschaft und Technik, vol. 13. VEB Deutscher Verlag der Wissenschaften, Berlin (1967)

    MATH  Google Scholar 

  25. Levin B. Ja.: Distribution of zeros of entire functions, Translations of Mathematical Monographs, 5. American Mathematical Society, Providence, R.I. (1980)

  26. Mukherjea, A., Pothoven, K.: Real and functional analysis. Plenum Press, New York (1978)

    Book  Google Scholar 

  27. Mumford, D.: Tata lectures on theta. I, Progress in Mathematics, 28. Birkhäuser Boston, Inc., Boston, MA, (1983)

  28. Olver F., Lozier D., Boisvert R., Clark Ch.: NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge (2010)

  29. Prudnikov, A., Brychkov, Yu., Marichev, O.: Integrals and series, vol. 1. Gordon & Breach Science Publishers, New York, Elementary functions (1986)

  30. Rankin, R.: Modular forms and functions. Cambridge University Press, Cambridge-New York-Melbourne (1977)

    Book  Google Scholar 

  31. Rudin, W.: Real and complex analysis, 2nd edn. McGraw-Hill Book Co., New York (1974)

    MATH  Google Scholar 

  32. Ruscheweyh, S., Salinas, L., Sugawa, T.: Completely monotone sequences and universally prestarlike functions. Israel J. Math. 171, 285–304 (2009)

    Article  MathSciNet  Google Scholar 

  33. Saff, E., Snider, A.: Fundamentals of complex analysis with applications to engineering and science, 3rd edn. Prentice Hall, Pearson Education (2003)

  34. Sarason, D.: Complex function theory, 2nd edn. American Mathematical Society, Providence (2007)

    Book  Google Scholar 

  35. Schwarz, H.A.: Über diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt. J. Reine Angew. Math. 75, 292–335 (1873)

    MathSciNet  MATH  Google Scholar 

  36. Shohat, J., Tamarkin, J.: The problem of moments, A M S. RI, rev.ed, Providence (1950)

    MATH  Google Scholar 

  37. Whittaker E., Watson G.: A course of modern analysis, Cambridge, (1950)

  38. Widder, D.: The Laplace Transform, vol. 1. Princeton University, Princeton (1946)

    Google Scholar 

Download references

Acknowledgements

We thank Danylo Radchenko for sharing his insides with us. We also thank the referees for positive feedback and constructive criticism. In particular, we thank one of the referees for telling us about the connection with quasiconformal mappings and the Grötszch ring.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Bakan.

Additional information

Communicated by Valdimir V. Andrievskii.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memory of Stephan Ruscheweyh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakan, A., Hedenmalm, H. Exponential Integral Representations of Theta Functions. Comput. Methods Funct. Theory 20, 591–621 (2020). https://doi.org/10.1007/s40315-020-00332-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-020-00332-x

Keywords

Mathematics Subject Classification

Navigation