Skip to main content
Log in

Direct Synthesis of Novel Sponge-Like Porous MnOx Catalysts Derived from Mn-MOFs for High-Efficiently Eliminate o-Dichlorobenzene by Catalytic Combustion

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

A series of novel lamellar sponge-like MnOx porous catalysts derived from Mn-MOFs have been prepared via modulator-assisted synthesis method and their catalytic performance has been evaluated for o-dichlorobenzene (o-DCB) catalytic combustion reaction. The catalysts were characterized by BET, XRD, Raman, SEM, TEM, XPS, H2-TPR, O2-TPD and other techniques to test the physicochemical properties of the catalysts. The results showed that MnOx had different morphology and properties. The active oxygen species and large specific surface area of MnOx played an important role in the catalytic combustion of o-dichlorobenzene. The T90 of the laminar catalyst MnOx-D, MnOx-D/M, MnOx-D/H/M, and MnOx-D/H was 321, 341, 346, and 355 °C, respectively. MnOx-D has good catalytic activity for the catalytic combustion of o-DCB, which confirmed that surface lattice oxygen played a crucial role in o-DCB combustion. Additionally, they had good hydrothermal stability, thermal stability and water resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jiang Y, Gao J, Zhang Q, Liu Z, Fu M, Wu J, Hu Y, Ye D (2019) Enhanced oxygen vacancies to improve ethyl acetate oxidation over MnOx-CeO2 catalyst derived from MOF template. Chem Eng J 371:78–87

    CAS  Google Scholar 

  2. Castaño MH, Molina R, Moreno S (2015) Catalytic oxidation of VOCs on MnMgAlOx mixed oxides obtained by auto-combustion. J Mol Catal A 398:358–367

    Google Scholar 

  3. Dai Q, Zhang Z, Yan J, Wu J, Johnson G, Sun W, Wang X, Zhang S, Zhan W (2018) Phosphate-functionalized CeO2 nanosheets for efficient catalytic oxidation of dichloromethane. Environ Sci Technol 52:13430–13437

    CAS  PubMed  Google Scholar 

  4. Colman-Lerner E, Peluso MA, Sambeth J, Thomas H (2016) Cerium, manganese and cerium/manganese ceramic monolithic catalysts. Study of VOCs and PM removal. J. Rare Earths. 34:675–682

    CAS  Google Scholar 

  5. Dai Q, Huang H, Zhu Y, Deng W, Bai S, Wang X, Lu G (2012) Catalysis oxidation of 1,2-dichloroethane and ethyl acetate over ceria nanocrystals with well-defined crystal planes. Appl Catal B 117–118:360–368

    Google Scholar 

  6. Cai T, Huang H, Deng W, Dai Q, Liu W, Wang X (2015) Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Appl Catal B 166–167:393–405

    Google Scholar 

  7. Park EJ, Lee JH, Kim K-D, Kim DH, Jeong M-G, Kim YD (2016) Toluene oxidation catalyzed by NiO/SiO2 and NiO/TiO2/SiO2: Towards development of humidity-resistant catalysts. Catal Today 260:100–106

    CAS  Google Scholar 

  8. Gong H, Zhou S, Chen Z, Chen L (2019) Effect of volatile organic compounds on carbon dioxide adsorption performance via pressure swing adsorption for landfill gas upgrading. Renew Energy 135:811–818

    CAS  Google Scholar 

  9. Rashidi R, Yousefinejad S, Mokarami H (2018) Catalytic ozonation process using CuO/clinoptilolite zeolite for the removal of formaldehyde from the air stream. Int J Environ Sci Technol 16:6629–6636

    Google Scholar 

  10. X. Wang, M. Sun, M. Murugananthan, Y. Zhang, L. Zhang, Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds. Appl. Catal. B: Environ. 260 (2020).

  11. Debecker DP, Bertinchamps F, Blangenois N, Eloy P, Gaigneaux EM (2007) On the impact of the choice of model VOC in the evaluation of V-based catalysts for the total oxidation of dioxins: Furanvs. chlorobenzene. Appl. Catal. B 74:223–232

    CAS  Google Scholar 

  12. Yang P, Meng Z, Yang S, Shi Z, Zhou R (2014) Highly active behaviors of CeO2–CrOx mixed oxide catalysts in deep oxidation of 1,2-dichloroethane. J Mol Catal A 393:75–83

    CAS  Google Scholar 

  13. Garcia T, Agouram S, Taylor SH, Morgan D, Dejoz A, Vázquez I, Solsona B (2015) Total oxidation of propane in vanadia-promoted platinum-alumina catalysts: Influence of the order of impregnation. Catal Today 254:12–20

    CAS  Google Scholar 

  14. Zhou G, Lan H, Gao T, Xie H (2014) Influence of Ce/Cu ratio on the performance of ordered mesoporous CeCu composite oxide catalysts. Chem Eng J 246:53–63

    CAS  Google Scholar 

  15. Wang Z, Zou G, Wang W, Tang Z, Bi Y, Wang X (2017) Melamine-assisted to fabricate pure α-Fe2O3 polyhedron with high-index facet exposed as an effective photoelectrode. J Power Sources 343:94–102

    CAS  Google Scholar 

  16. Zhao Y, Dong F, Han W, Zhao H, Tang Z (2019) The synergistic catalytic effect between graphene oxide and three-dimensional ordered mesoporous Co3O4 nanoparticles for low-temperature CO oxidation. Microporous Mesoporous Mater 273:1–9

    CAS  Google Scholar 

  17. Liu L, Zhang H, Jia J, Sun T, Sun M (2018) Direct molten polymerization synthesis of highly active samarium manganese perovskites with different morphologies for VOC removal. Inorg Chem 57:8451–8457

    CAS  PubMed  Google Scholar 

  18. Zhang X, Qu N, Fan Q, Yang H, Liu A (2019) Palladium nanoparticles hosted in graphene-based 2-dimension polyelectrolyte brushes for enhanced hydrogenation selectivity of o-chloronitrobenzene. Appl Surf Sci 485:230–237

    CAS  Google Scholar 

  19. Lee D-Y, Elgowainy A, Kotz A, Vijayagopal R, Marcinkoski J (2018) Life-cycle implications of hydrogen fuel cell electric vehicle technology for medium- and heavy-duty trucks. J Power Sources 393:217–229

    CAS  Google Scholar 

  20. Zong L, Zhang G, Zhao J, Dong F, Zhang J, Tang Z (2018) Morphology-controlled synthesis of 3D flower-like TiO2 and the superior performance for selective catalytic reduction of NOx with NH3. Chem Eng J 343:500–511

    CAS  Google Scholar 

  21. Cuo Z, Deng Y, Li W, Peng S, Zhao F, Liu H, Chen Y (2018) Monolithic Mn/Ce-based catalyst of fibrous ceramic membrane for complete oxidation of benzene. Appl Surf Sci 456:594–601

    CAS  Google Scholar 

  22. Yi H, Huang Y, Tang X, Zhao S, Gao F, Xie X, Wang J, Yang Z (2018) Synthesis of Mn-CeOx/cordierite catalysts using various coating materials and pore-forming agents for non-methane hydrocarbon oxidation in cooking oil fumes. Ceram Int 44:15472–15477

    CAS  Google Scholar 

  23. Torres JQ, Giraudon J-M, Lamonier J-F (2011) Formaldehyde total oxidation over mesoporous MnOx catalysts. Catal Today 176:277–280

    CAS  Google Scholar 

  24. Gallegos MV, Peluso MA, Finocchio E, Thomas HJ, Busca G, Sambeth JE (2017) Removal of VOCs by catalytic process. A study of MnZnO composites synthesized from waste alkaline and Zn/C batteries. Chem Eng J 313:1099–1111

    CAS  Google Scholar 

  25. Konsolakis M, Carabineiro SA, Tavares PB, Figueiredo JL (2013) Redox properties and VOC oxidation activity of Cu catalysts supported on Ce(1)-xSmxOdelta mixed oxides. J Hazard Mater 261:512–521

    CAS  PubMed  Google Scholar 

  26. Morales MR, Barbero BP, Lopez T, Moreno A, Cadús LE (2009) Evaluation and characterization of Mn–Cu mixed oxide catalysts supported on TiO2 and ZrO2 for ethanol total oxidation. Fuel 88:2122–2129

    CAS  Google Scholar 

  27. Ma X, Feng X, Guo J, Cao H, Suo X, Sun H, Zheng M (2014) Catalytic oxidation of 1,2-dichlorobenzene over Ca-doped FeOx hollow microspheres. Appl Catal B 147:666–676

    CAS  Google Scholar 

  28. Bai W, Li S, Ma J, Cao W, Zheng J (2019) Ultrathin 2D metal–organic framework (nanosheets and nanofilms)-based xD–2D hybrid nanostructures as biomimetic enzymes and supercapacitors. J Mater Chem A 7:9086–9098

    CAS  Google Scholar 

  29. Ren F, Gao L, Yuan Y, Zhang Y, Alqrni A, Al-Dossary OM, Xu J (2016) Enhanced BTEX gas-sensing performance of CuO/SnO2 composite. Sens Actuators B 223:914–920

    CAS  Google Scholar 

  30. Ye Z, Giraudon JM, Nuns N, Simon P, De Geyter N, Morent R, Lamonier JF (2018) Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation. Appl Catal B 223:154–166

    CAS  Google Scholar 

  31. Xingyi W, Qian K, Dao L (2009) Catalytic combustion of chlorobenzene over MnOx–CeO2 mixed oxide catalysts. Appl Catal B 86:166–175

    Google Scholar 

  32. Guo C, Zhang Y, Zhang L, Zhang Y, Wang J (2018) 2-Methylimidazole-assisted synthesis of a two-dimensional MOF-5 catalyst with enhanced catalytic activity for the Knoevenagel condensation reaction. CrystEngComm 20:5327–5331

    CAS  Google Scholar 

  33. Chen C, Wang X, Zhang J, Bian C, Pan S, Chen F, Meng X, Zheng X, Gao X, Xiao F-S (2015) Superior performance in catalytic combustion of toluene over mesoporous ZSM-5 zeolite supported platinum catalyst. Catal Today 258:190–195

    CAS  Google Scholar 

  34. Delimaris D, Ioannides T (2008) VOC oxidation over MnOx–CeO2 catalysts prepared by a combustion method. Appl Catal B 84:303–312

    CAS  Google Scholar 

  35. Sun P, Wang W, Dai X, Weng X, Wu Z (2016) Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2 /H-ZSM5 catalysts under dry and humid conditions. Appl Catal B 198:389–397

    CAS  Google Scholar 

  36. Napruszewska BD, Michalik-Zym A, Dula R, Bielańska E, Rojek W, Machej T, Socha RP, Lityńska-Dobrzyńska L, Bahranowski K, Serwicka EM (2017) Composites derived from exfoliated Laponite and Mn-Al hydrotalcite prepared in inverse microemulsion: a new strategy for design of robust VOCs combustion catalysts. Appl Catal B 211:46–56

    CAS  Google Scholar 

  37. Piumetti M, Bensaid S, Andana T, Russo N, Pirone R, Fino D (2017) Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions: from powder catalysts to structured reactors. Appl Catal B 205:455–468

    CAS  Google Scholar 

  38. Tang W, Li W, Li D, Liu G, Wu X, Chen Y (2014) Synergistic effects in porous Mn–Co mixed oxide nanorods enhance catalytic deep oxidation of benzene. Catal Lett 144:1900–1910

    CAS  Google Scholar 

  39. Zhao H, Han W, Dong F, Tang Z (2018) Highly-efficient catalytic combustion performance of 1,2-dichlorobenzene over mesoporous TiO2–SiO2 supported CeMn oxides: the effect of acid sites and redox sites. J Ind Eng Chem 64:194–205

    CAS  Google Scholar 

  40. Pérez A, Lamonier J-F, Giraudon J-M, Molina R, Moreno S (2011) Catalytic activity of Co–Mg mixed oxides in the VOC oxidation: effects of ultrasonic assisted in the synthesis. Catal Today 176:286–291

    Google Scholar 

  41. Li D, Li C, Suzuki K (2013) Catalytic oxidation of VOCs over Al- and Fe-pillared montmorillonite. Appl Clay Sci 77–78:56–60

    Google Scholar 

  42. Zhao H, Dong F, Han W, Tang Z (2019) Study of morphology-dependent and crystal-plane effects of CeMnOx catalysts for 1,2-dichlorobenzene catalytic elimination. Ind Eng Chem Res 58:18055–18064

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere appreciation for the National Natural Science Foundation of China (No. 21707145, 51908535), the Major Project of Inner Mongolia Science and Technology(2019ZD018), Talents of Innovation and Entrepreneurship Project of Lanzhou, China (2018-RC-65), the Science and Technology Program of Chengguan district, lanzhou city (2019JSCX0042), and the DNL Cooperation Fund, CAS (DNL201906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, W., Zhao, H., Tang, Z. et al. Direct Synthesis of Novel Sponge-Like Porous MnOx Catalysts Derived from Mn-MOFs for High-Efficiently Eliminate o-Dichlorobenzene by Catalytic Combustion. Catal Surv Asia 24, 278–290 (2020). https://doi.org/10.1007/s10563-020-09308-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09308-2

Keywords

Navigation