Skip to main content
Log in

Biogenic Polyamines Influence the Antibiotic Susceptibility and Cell-Surface Properties of Mycobacterium smegmatis

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Biogenic polyamines affect the properties of surface of Mycobacterium smegmatis cells. The presence of spermidine and spermine in the culture medium had a significant effect on the cell-surface charge and sliding motility of mycobacteria but did not affect the cell-surface hydrophobicity. Cell aggregation in M. smegmatis and the capacity for biofilm formation increased under polyamine treatment. Polyamines also decreased the antibiotic susceptibility of both planktonic forms and biofilms. For the first time, spermine has been shown to enhance the antimycobacterial activity of rifampicin, which is of interest for the treatment of mycobacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. WHO. Global Tuberculosis Report 2019, Geneva, 2019. https://www.who.int/tb/global-report-2019.

  2. Diaz, M.A.A., Huff, T.N., and Libertin, C.R., J. Clin. Tuberc. Other Mycobact. Dis., 2019, vol. 15, p. 100091.

    Article  Google Scholar 

  3. Harms, A., Maisonneuve, E., and Gerdes, K., Science, 2016, vol. 354, no. 6318, p. aaf4268 1-9.

  4. Tkachenko, A.G., Appl. Biochem. Microiol., 2018, vol. 54, no. 2, pp. 110–133.

    Google Scholar 

  5. Tkachenko, A.G., Kashevarova, N.M., Tyuleneva, E.A., and Shumkov, M.S., FEMS Microbiol. Lett., 2017, vol. 364, no. 9, p. fnx084 1-9.

  6. Michael, A.J., J. Biol. Chem., 2016, vol. 291, no. 29, pp. 14896–14903.

    Article  CAS  Google Scholar 

  7. Herbst, E.J., Weaver, R.H., and Keister, D.L., Arch. Biochem. Biophys., 1958, vol. 75, no. 1, pp. 171–177.

    Article  CAS  Google Scholar 

  8. Samartzidou, H., Mehrazin, M., Xu, Z., Benedik, M.J., and Delcour, A.H., J. Bacteriol., 2003, vol. 185, no. 1, pp. 13–19.

    Article  CAS  Google Scholar 

  9. Tabor, C.W. and Tabor, H., Annu. Rev. Biochem., 1984, vol. 53, no. 1, pp. 749–790.

    Article  CAS  Google Scholar 

  10. Igarashi, K. and Kashiwagi, K., Biochem. Biophys. Res. Commun., 2000, vol. 271, no. 3, pp. 559–564.

    Article  CAS  Google Scholar 

  11. Gevrekci, A.Ö., J. Microbiol. Biotechnol., 2017, vol. 33, no. 11, p. 204.

    Article  Google Scholar 

  12. Igarashi, K. and Kashiwagi, K., J. Biochem., 2006, vol. 139, no. 1, pp. 11–16.

    Article  CAS  Google Scholar 

  13. Tkachenko, A.G., Akhova, A.V., Shumkov, M.S., and Nesterova, L.Yu., Res. Microbiol., 2012, vol. 163, no. 2, pp. 83–91.

    Article  CAS  Google Scholar 

  14. Romano, A., Trip, H., Lolkema, J.S., and Lucas, P.M., J. Bacteriol., 2013, vol. 195, no. 6, pp. 1249–1254.

    Article  CAS  Google Scholar 

  15. Zamakhaev, M.V., Grigorov, A.S., Kaprel’yants, A.S., and Shumkov, M.S., Vestn. Perm. Univ., Ser. Biol., 2018, no. 3, pp. 284–291.

  16. Kashiwagi, K. and Igarashi, K., Methods Mol. Biol., 2011, no. 720, pp. 295–308.

  17. Balasundaram, D. and Tyagi, A.K., Eur. J. Biochem., 1989, vol. 183, no. 2, pp. 339–345.

    Article  CAS  Google Scholar 

  18. Souzu, H., Biochim. Biophys. Acta, 1986, vol. 861, no. 2, pp. 361–367.

    Article  CAS  Google Scholar 

  19. Gupta, R.S., Lo, B., and Son, J., Front. Microbiol., 2018, vol. 9, no. 67, pp. 1–9.

    Article  CAS  Google Scholar 

  20. O'Toole, G.A. and Kolter, R., Mol. Microbiol., 1998, vol. 30, no. 2, pp. 295–304.

    Article  CAS  Google Scholar 

  21. Naves, P., del Prado, G., Huelves, L., Gracia, M., Ruiz, V., Blanco, J., Dahbi, G., Blanco, M., del Carmen, PonteM., and Soriano, F., Microb. Pathog., 2008, vol. 45, no. 2, pp. 86–91.

    Article  CAS  Google Scholar 

  22. Ceri, H., Olson, M.E., Stremick, C., Read, R.R., Morck, D., and Buret, A., J. Clin. Microbiol., 1999, vol. 37, no. 6, pp. 1771–1776.

    Article  CAS  Google Scholar 

  23. Rosenberg, M., FEMS Microbiol. Lett., 2006, vol. 262, no. 2, pp. 129–134.

    Article  CAS  Google Scholar 

  24. McNeil, M.B., Dennison, D., and Parish, T., Microbiology, 2017, vol. 163, no. 7, pp. 1065–1070.

    Article  CAS  Google Scholar 

  25. Halder, S., Yadav, K.K., Sarkar, R., Mukherjee, S., Saha, P., Haldar, S., Karmakar, S., and Sen, T., Springerplus, 2015, vol. 4, no. 1, p. P. 642.

  26. Ceri, H., Olson, M., Morck, D., Storey, D., Read, R., Buret, A., and Olson, B., Methods Enzymol., 2001, vol. 337, pp. 377–385.

    Article  CAS  Google Scholar 

  27. Garrison, A.T. and Huigens III, R.W., Curr. Top. Med. Chem., 2017, vol. 17, no. 17, pp. 1954–1964.

    Article  CAS  Google Scholar 

  28. Sarathy, J., Lee, E., and Dartois, V., PLoS One, 2013, vol. 8, no. 6.

  29. Martinez, A., Torello, S., and Kolter, R., J. Bacteriol., 1999, vol. 181, no. 23, pp. 7331–7338.

    Article  CAS  Google Scholar 

  30. Recht, J., Martinez, A., Torello, S., and Kolter, R., J. Bacteriol., 2000, vol. 182, no. 15, pp. 4348–4351.

    Article  CAS  Google Scholar 

  31. Kulka, K., Hatfull, G., and Ojha, A.K., J. Vis. Exp., 2012, no. 60, e3820 1-6.

  32. Mulcahy, L.R., Isabella, V.M., and Lewis, K., Microb. Ecol., 2014, vol. 68, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

  33. Stickler, D., Curr. Opin. Microbiol., 1999, vol. 2, no. 3, pp. 270–275.

    Article  CAS  Google Scholar 

  34. Mah, T.F., Future Microbiol., 2012, vol. 7, no. 9, pp. 1061–1072.

    Article  CAS  Google Scholar 

  35. Andreev, V.S., in VI Mezhdunarodnyi Kongress “Slabye i sverkhslabye polya i izlucheniya v biologii i meditsine” (VI International Congress “Weak and Ultraweak Fields and Radiations in Biology and Medicine), 2012, p. 118.

  36. Igarashi, K. and Kashiwagi, K., Methods Mol. Biol., 2011, vol. 720, pp. 51–65.

    Article  CAS  Google Scholar 

  37. Sakamoto, A., Terui, Y., Yamamoto, T., Kasahara, T., Nakamura, M., Tomitori, H., Yamamoto, K., Ishihama, A., Michael, A.J., Igarashi, K., and Kashiwagi, K., Int. J. Biochem. Cell. Biol., 2012, vol. 44, no. 11, pp. 1877–1886.

    Article  CAS  Google Scholar 

  38. Nesterova, L.Yu., Negorelova, E.V., and Tkachenko, A.G., Vestn. Perm. Univ., Ser. Biol., 2019, no. 3, pp. 300–308.

  39. Sharma, I.M., Petchiappan, A., and Chatterji, D., IUBMB Life, 2014, vol. 66, no. 12, pp. 823–824.

    Article  CAS  Google Scholar 

  40. O'Toole, G., Kaplan, H.B., and Kolter, R., Annu. Rev. Microbiol., 2000, vol. 54, pp. 49–79.

    Article  CAS  Google Scholar 

  41. Samartzidou, H. and Delcour, A.H., J. Bacteriol., 1999, vol. 181, no. 3, pp. 791–798.

    Article  CAS  Google Scholar 

  42. Jees, S., Sharmada, S., and Parthasarathi, A., bioRxiv, Cold Spring Harbor Laboratory, 2019, Accessed December 9, 2019.https://doi.org/10.1101/624569

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 18-73-10156.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Nesterova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterova, L.Y., Tsyganov, I.V. & Tkachenko, A.G. Biogenic Polyamines Influence the Antibiotic Susceptibility and Cell-Surface Properties of Mycobacterium smegmatis. Appl Biochem Microbiol 56, 387–394 (2020). https://doi.org/10.1134/S0003683820040110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683820040110

Keywords:

Navigation