Skip to main content
Log in

A Map-Aided Navigation Algorithm without Preprocessing of Field Measurements

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

A new algorithm for geophysical map-aided navigation is proposed. It does not require any preliminary estimation of the field measured along the vehicle trajectory and, as consequence, does not need any stochastic field model. The algorithm uses a whole set of the available geophysical field measurements. The accuracy analysis procedure applied to estimate the effectiveness of the proposed algorithm is described. The features and advantages of this algorithm are illustrated by an example of marine gravity-aided navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Krasovskii, A.A., Beloglazov, I.N., and Chigin, G.P., Teoriya korrelyatsionno-ekstremal’nykh navigatsionnykh system (Theory of Correlation-Extremal Navigation Systems), Moscow, Nauka, 1979.

  2. Beloglazov, I.N., Dzhandzhgava, G.I., and Chigin, G.P., Osnovy navigatsii po geofizicheskim polyam (Foundations of Map-Aided Navigation), Moscow, Nauka, 1985.

  3. Stepanov, O.A., Metody otsenki potentsial’noi tochnosti v korrelyatsionno-ekstremal’nykh navigatsionnykh sistemakh (Methods for Estimation of Potential Accuracy in Correlation-Extremal Navigation Systems), St. Petersburg, TsNII Elektropribor, 1993.

  4. Bergman, N., Recursive Bayesian Estimation: Navigation and Tracking Applications, Sweden, Linkoping University, 1999.

    Google Scholar 

  5. Gustafsson, F. et al., Particle Filters for Positioning, Navigation, and Tracking, IEEE Transactions on Signal Processing, 2002, vol. 50, no. 2, pp. 425–437.

    Article  Google Scholar 

  6. Nygren, I. and Jansson, M., Terrain Navigation for Underwater Vehicles Using the Correlator Method, IEEE Journal of Oceanic Engineering, 2004, vol. 29, no. 3, pp. 906–915.

    Article  Google Scholar 

  7. Carreno, S. et al., A Survey on Terrain Based Navigation for AUVs, OCEANS 2010 MTS, IEEE Seattle,IEEE, 2010, pp. 1–7.

    Google Scholar 

  8. Vaman, D., TRN History, Trends and the Unused Potential, 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), IEEE, 2012, pp. 1A3-1–1A3-16.

  9. Avgustov, L.I. et al., Navigatsiya letatel’nykh apparatov v okolozemnom prostranstve (Aircraft Navigation in the Near-Earth Space), Moscow, Nauchtekhlitizdat, 2015, pp. 592.

  10. Dzhandzhgava, G.I. and Avgustov, L.I., Navigatsiya po geopolyam (Map-Aided Navigation), Moscow, Nauchtekhlitizdat, 2018.

  11. Stepanov, O.A. and Toropov, A.B., Nonlinear filtering for map-aided navigation. Part 1. An overview of algorithms, Gyroscopy and Navigation, 2015, no. 6, pp. 324–337.

  12. Scherbinin, V.V., Postroeniye invariantnykh korrelyatsionno-ekstremal’nykh system navigatsii i navedeniya letatel’nykh apparatov (Design of Invariant Correlation-Extremal Systems for Aircraft Navigation and Guidance), Moscow, Izd. MGTU, 2011.

  13. Han, Y. et al., An improved TERCOM-based algorithm for gravity-aided navigation, IEEE Sensors Journal, 2016, vol. 16, no. 8, pp. 2537–2544.

    Article  Google Scholar 

  14. Wei, E. et al., A robust solution of integrated SITAN with TERCOM algorithm: weight-reducing iteration technique for underwater vehicles’ gravity-aided inertial navigation system, Navigation, 2017, vol. 64, no. 1, pp. 111–122.

    Article  Google Scholar 

  15. Sazonova, T.V. and Shelagurova, M.S., Geoinformatsiya v kompleksakh bortovogo oborudovaniya letatel’nykh apparatov (Geoinformation for Onboard Equipment of Aircraft), Moscow, Nauchtekhlitizdat, 2018.

  16. Melo, J. and Matos, A., Survey on Advances on Terrain Based Navigation for Autonomous Underwater Vehicles, Ocean Engineering, 2017, vol. 139, pp. 250-264.

    Article  Google Scholar 

  17. Pasnani, P. and Seto, M.L., Terrain-based localization and mapping for autonomous underwater vehicles using particle filters with marine gravity anomalies, IFAC-PapersOnLine, 2018, vol. 51, no. 29, pp. 354–359.

    Article  Google Scholar 

  18. Tezisy dokladov 1-i nauchno-tekhnicheskoi konferentsii “Navigatsiya po gravitatsionnomu polyu zemli i ee metrologicheskoe obespechenie” (1st Scientific and Technical Conference “Navigation on the Earth’s Gravitational Field and Its Metrological Support”. Abstracts), Mendeleevo, FGUP VNII FTRI, 2017, pp. 146.

  19. Tezisy dokladov 2-i nauchno-tekhnicheskoi konferentsii “Navigatsiya po gravitatsionnomu i magnitnomu polyam zemli. Novye tekhnologii” (2nd Scientific and Technical Conference “Navigation on the Earth’s Gravitational and Magnetic Fields. New Technologies”. Abstracts), Mendeleevo, FGUP VNII FTRI, 2019, pp. 103.

  20. Zhou, T. et al., Adaptive particle filter based on Kullback-Leibler distance for underwater terrain aided navigation with multi-beam sonar, IET Radar, Sonar and Navigation, 2018, vol. 12, no. 4, pp. 433–441.

    Article  Google Scholar 

  21. Kostousov, V.B. and Tarkhanov, A.E., A new method for estimating coordinate correction errors by the geophysical field map, Tekhnicheskie problemy osvoeniya mirovogo okeana, 2019, no. 8, pp. 347–351.

  22. Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory for Navigation Data Processing), St. Petersburg, TsNII Elektropribor, 1998.

  23. Doucet, A., Freitas, N., and Gordon, N., Sequential Monte Carlo Methods in Practice, New York, NY, Springer New York, 2001.

    Book  Google Scholar 

  24. Chen, Z., Bayesian filtering: From Kalman filters to particle filters, and beyond, Statistics, 2003, vol. 182, no. 1, pp. 1–69.

    Article  Google Scholar 

  25. Sarkka, S., Bayesian Filtering and Smoothing, New York, NY, USA: Cambridge University Press, 2013.

    Book  Google Scholar 

  26. Stepanov, O.A. and Toropov, A.B., Nonlinear filtering for map-aided navigation. Part 2. Trends in the algorithm development. Gyroscopy and Navigation, 2016, no. 7, pp. 82–89.

  27. Candy, J.V., Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods, 2nd. ed., New Jersey, Wiley, 2016.

    Book  Google Scholar 

  28. Sovremennye metody i sredstva izmerenya parametrov gravitatsionnogo polya Zemli (Modern technologies and methods for measuring the Earth’s gravity field parameters), Eds., V.G. Peshekhonov, O.A. Stepanov, St. Petersburg, Concern CSRI Elektropribor, 2017.

    Google Scholar 

  29. Daum, F. and Huang, J., Curse of dimensionality and particle filters, IEEE Aerospace Conference Proceedings (Cat. No.03TH8652), IEEE Aerospace (Cat. No.03TH8652), Big Sky, Montana, USA 2003, vol. 4, pp. 1979–1993.

  30. Serin, E., Adali, S., Balcisoy, S., Entropy assisted automated terrain navigation using traveling salesman problem, Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, ACM Press, 2011, pp. 41–48.

  31. Wang, K. et al., Matching error of the iterative closest contour point algorithm for terrain-aided navigation, Aerospace Science and Technology, 2018, vol. 73, pp. 210–222.

    Article  Google Scholar 

  32. Gao, W. et al., improved artificial bee colony algorithm based gravity matching navigation method, Sensors, 2014, vol. 14, no. 7, pp. 12 968–12 989.

    Article  Google Scholar 

  33. Wu, L. et al., Performance evaluation and analysis for gravity matching aided navigation, Sensors, 2017, vol. 17, no. 4, p. 769.

    Article  Google Scholar 

  34. Nosov, A.S., and Stepanov, O.A., The effect of measurement preprocessing on the accuracy of map-aided navigation, Proc. 25th Saint Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg, Concern CSRI Elektropribor, 2018, pp. 1–4.

  35. Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing), Part 1, Vvedenie v teoriyu otsenivaniya (Introduction to the Estimation Theory), 3rd edition, St. Petersburg: Concern CSRI Elektropribor, 2017.

  36. Bolotin, Y.V. and Vyazmin, V.S., Gravity anomaly estimation by airborne gravimetry data using LSE and minimax optimization and spherical wavelet expansion, Gyroscopy and Navigation, 2015, no. 6, pp. 310–317.

  37. Panteleev, V.L., Fil’tratsiya v zadachakh inertsial’noi gravimetrii (Filtering in Inertial Gravimetry Problems), LAP LAMBERT ACADEMIC PUBL, 2012, pp. 52.

  38. Stepanov, O.A. et al., Comparative analysis of accuracy in estimating the gravity anomaly in the mode of filtering and smoothing, Vserossiiskaya nauchnaya konferentsiya po problemam upravleniya v tekhnicheskikh sistemakh (All-Russia Scientific Conference on Control Problems in Technical Systems), St. Petersburg, 2015, pp. 384–387.

  39. Krasnov, A.A. and Sokolov, A.V., A modern software system of a mobile Chekan-AM gravimeter, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 278–287.

    Article  Google Scholar 

  40. Koshaev, D.A. and Stepanov, O.A., Analysis of filtering and smoothing techniques as applied to aerogravimetry, Gyroscopy and Navigation, 2010, vol. 1, no. 1, pp. 19–25.

    Article  Google Scholar 

  41. Arulampalam, M.S. et al., A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal Processing, 2002, vol. 50, no. 2, pp. 174–188.

    Article  Google Scholar 

  42. Anonsen, K.B. and Hallingstad, O., Terrain aided underwater navigation using point mass and particle filters, IEEE/ION Position, Location, And Navigation Symposium 2006 IEEE/ION Position, Location, And Navigation Symposium, Coronado, CA, 2006, pp. 1027–1035.

  43. Stepanov, O.A. and Toropov, A.B., Comparison of point mass and particle filters in map-aided navigation, Proc. 17th Saint Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg, Concern CSRI Elektropribor, 2010, pp. 381–384.

  44. Schon, T., Gustafsson, F., and Nordlund, P.-J., Marginalized particle filters for mixed linear/nonlinear state-space models, IEEE Transactions on Signal Processing, 2005, vol. 53, no. 7, pp. 2279–2289.

    Article  MathSciNet  Google Scholar 

  45. Kalman, R.E., A new approach to linear filtering and prediction problems, Journal of basic Engineering, 1960, vol. 82, no. 1, pp. 35–45.

    Article  MathSciNet  Google Scholar 

  46. Rauch, H.E., Striebel, C.T., and Tung, F., Maximum likelihood estimates of linear dynamic systems, AIAA Journal, 1965, vol. 3, no. 8, pp. 1445–1450.

    Article  MathSciNet  Google Scholar 

  47. Kiselev, L.V. et al., Autonomous underwater robot as an ideal platform for marine gravity surveys, 24th Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, 2017, pp. 1–4

  48. Bolotin, Yu.V. and Golovan, A.A., Methods of inertial gravimetry, Moscow University Mechanics Bulletin, 2013, no. 68, pp. 117–125.

  49. Motorin, A.V. and Nosov, A.S., Accuracy and Sensitivity Analysis for Marine Gravimetry Algorithms in Dependence of Survey Conditions, 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia, IEEE, 2019, pp. 1210–1215.

  50. Stepanov, O.A. et al., Comparison of stationary and nonstationary adaptive filtering and smoothing algorithms for gravity anomaly estimation on board the aircraft, Proc. 4th IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM 2016), Saint Petersburg, Russia, 2016, pp. 53–60.

  51. Bolotin, Yu.V. and Popelensky, M.Yu., Accuracy analysis of airborne gravity when gravimeter parameters are identified in flight, Journal of Mathematical Sciences, 2007, no. 146, pp. 5911–5919.

  52. Sokolov, A.V., Krasnov, A.A., Zheleznyak, L.K., Improving the accuracy of marine gravimeters, Gyroscopy and Navigation, 2019, vol. 10, no. 3, pp. 155–160.

    Article  Google Scholar 

  53. Stepanov, O.A. et al., Identification of Total Errors of Digital Maps and Sensors of Geophysical Fields, Proc. IAG Symposium on Terrestrial Gravimetry “Static and Mobile Measurements”, Saint Petersburg, Russia, 2016, pp. 213–216.

  54. Keating, P., Error estimation and optimization of gravity surveys, Geophysical Prospecting, 1995, vol. 43, no. 4, pp. 569–580.

    Article  Google Scholar 

  55. Jordan, S.K., Self-consistent Statistical Models for Gravity Anomaly and Undulation of the Geoid, Journal of Geophysical Research, 1972, vol. 77, no. 20, pp. 3660–3670.

    Article  Google Scholar 

  56. Müller, S., Schüler, L., GSTools: Reverberating Red, Zenodo, 2019.

    Google Scholar 

  57. Stepanov O.A., Toropov A.B., and Nosov A.S., Navigation informativity of geophysical fields in map-aided navigation, Proc. of DGON Inertial Sensors and Systems (ISS), Karlsruhe, Germany, 2017, pp. 1–19.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 18-19-00627.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Stepanov or A. S. Nosov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepanov, O.A., Nosov, A.S. A Map-Aided Navigation Algorithm without Preprocessing of Field Measurements. Gyroscopy Navig. 11, 162–175 (2020). https://doi.org/10.1134/S207510872002008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207510872002008X

Keywords:

Navigation