Skip to main content
Log in

ELECTRODYNAMIC MODEL OF OXYGEN REDOX SORPTION BY METAL-CONTAINING NANOCOMPOSITES

  • SELF-ASSEMBLED STRUCTURES AND NANOASSEMBLIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

An electrodynamic model of the redox sorption of oxygen from water on metal-ion-exchange nanocomposites’ (NCs) granular layers is proposed. It features a simultaneous description of the oxygen reduction process along the electrochemical and chemical routes. Due to the inhomogeneous oxidation of metal nanoparticles by oxygen, the granular layer of the NC ohmic resistance, which varies in height and time, is taken into account. The adequacy of the model was tested on a copper-containing NC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. I. Kalinichev, Labor. Pr-vo., No. 2, 162 (2019).

  2. R. Kh. Khamizov, D. A. Sveshnikova, A. E. Kucherova, and L. A. Sinyaeva, Russ. J. Phys. Chem. A 92, 1782 (2018).

    Article  CAS  Google Scholar 

  3. A. M. Dolgonosov, R. Kh. Khamizov, N. K. Kolotilina, et al., Sorbtsion. Khromatogr. Protsessy 16, 400 (2016).

    CAS  Google Scholar 

  4. V. V. Baklan, A. E. Kalyusskii, and S. P. Grekov, Russ. J. Phys. Chem. A 70, 1424 (1996).

    Google Scholar 

  5. Yu. A. Leikin and E. A. Kirillov, Russ. J. Phys. Chem. A 70, 282 (1996).

    Google Scholar 

  6. T. Li, P. Yu, and Y. Luo, J. Appl. Polym. Sci. 131, 40430 (2014).

    Google Scholar 

  7. V. V. Volkov, T. A. Kravchenko, and V. I. Roldugin, Russ. Chem. Rev. 82, 465 (2013).

    Article  Google Scholar 

  8. L. Karpenko-Jereb, P. Innerwinkler, A. M. Kelterer, et al., Int. J. Hydrogen Energy 39, 7077 (2014).

    Article  CAS  Google Scholar 

  9. M. Kh. Urtenov, A. V. Pis’menskii, V. V. Nikonenko, and A. V. Kovalenko, Membr. Membr. Tekhnol. 8, 24 (2018).

    Google Scholar 

  10. T. A. Kravchenko, L. N. Polyanskii, A. I. Kalinichev, and D. V. Konev, Nanocomposites Metal-Ion Exchanger (Nauka, Moscow, 2009) [in Russian].

    Google Scholar 

  11. M. Shahinpoor, RSC Smart Materials, No. 17: Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles (Roy. Soc. Chem., UK, Cambridge, 2016), Vol. 1.

    Google Scholar 

  12. T. A. Kravchenko, E. V. Zolotukhina, M. Yu. Chaika, and A. B. Yaroslavtsev, Electrochemistry of Metal-Ion Exchanger Nanocomposites (Nauka, Moscow, 2013) [in Russian].

    Google Scholar 

  13. L. N. Polyanskii, Sorbtsion. Khromatogr. Protsessy 14, 813 (2014).

    CAS  Google Scholar 

  14. V. S. Gurskii, D. A. Kirpikov, E. Yu. Kharitonova, Yu. V. Tsapko, and I. M. Yasnev, Russ. J. Appl. Chem. 88, 1656 (2015).

    Article  CAS  Google Scholar 

  15. L. N. Polyanskii, E. N. Korzhov, D. D. Vakhnin, and T. A. Kravchenko, Russ. J. Phys. Chem. A 90, 1675 (2016).

    Article  CAS  Google Scholar 

  16. L. N. Polyanskii, E. N. Korzhov, D. D. Vakhnin, and T. A. Kravchenko, Russ. J. Phys. Chem. A 90, 1889 (2016).

    Article  CAS  Google Scholar 

  17. T. A. Kravchenko and N. I. Nikolaev, Kinetics and Dynamics of Processes in Redoxites (Khimiya, Moscow, 1982) [in Russian].

    Google Scholar 

  18. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley, New York, 1968).

    Google Scholar 

  19. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  20. D. D. Vakhnin, L. N. Polyanskii, T. A. Kravchenko, V. E. Pridorogina, and N. A. Zheltoukhova, Russ. J. Phys. Chem. A 93, 951 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Numerical calculations were performed using the resources of the competence center of the National Technology Initiative (NTI), Institute of Problems of Chemical Physics (IPCP), Russian Academy of Sciences (RAS) as part of a state assignment (topic no. AAAA-A19-119061890019).

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-08-00404a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kravchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, T.A., Konev, D.V., Vakhnin, D.D. et al. ELECTRODYNAMIC MODEL OF OXYGEN REDOX SORPTION BY METAL-CONTAINING NANOCOMPOSITES. Nanotechnol Russia 14, 523–530 (2019). https://doi.org/10.1134/S1995078019060090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019060090

Navigation