Skip to main content
Log in

Facile Synthesis of Ultrasmall, Highly Stable, and Biocompatible Gold Nanoparticles Stabilized with Lipoic Acid: Cytotoxicity and Structural Characterization

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Using the colloidal method, and lipoic acid as a stabilizer, ultrasmall gold nanoparticles with an average size of 2.5 nm were synthesized. They are highly stable, have COOH functional groups, at concentrations lower than 100 μg/mL are non-cytotoxic, and the synthesis route is simple and economical. UV–Vis, FT-IR, Raman, and TEM spectroscopy were used to analyze their stability, composition and morphology. Furthermore, the cytotoxicity of the gold nanoparticles was evaluated by MTT assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. L. Tamayo, H. Palza, J. Bejarano, and P. Zapata, “Polymer composites with metal nanoparticles: Synthesis, properties, and application polymer composites with functionalized nanoparticles,” in Polymer Composites with Functionalized Nanoparticles (Elsevier, Amsterdam, 2019), pp. 249–286.

    Google Scholar 

  2. K. Haume et al., “Gold nanoparticles for cancer radiotherapy: A review,” Cancer Nanotechnol. 7, 8 (2016).

    Article  Google Scholar 

  3. R. Herizchi, E. Abbasi, M. Milani, and A. Akbarzadeh, “Current methods for synthesis of gold nanoparticles,” Artif. Cells, Nanomed. Biotechnol. 44, 596–602 (2016).

    Article  CAS  Google Scholar 

  4. J. Guo, K. Rahme, Y. He, L. Li, J. Holmes, and C. O’Driscoll, “Gold nanoparticles enlighten the future of cancer theranostics,” Int. J. Nanomed. 12, 6131–6152 (2017).

    Article  CAS  Google Scholar 

  5. K. Huang et al., “Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo,” ACS Nano 6, 4483–4493 (2012).

    Article  CAS  Google Scholar 

  6. S. Afonso et al., “Electrochemical detection of Salmonella using gold nanoparticles,” Biosens. Bioelectron. 40, 121–126 (2013).

    Article  CAS  Google Scholar 

  7. S. Parveen, R. Misra, and S. Sahoo, “Nanoparticles: A boon to drug delivery, therapeutics, diagnostics, and imaging,” Nanomed. Nanotechnol., Biol. Med. 8, 147–166 (2012).

    CAS  Google Scholar 

  8. H. Daraee, A. Eatemadi, E. Abbasi, S. Aval, M. Kouhi, and A. Akbarzadeh, “Application of gold nanoparticles in biomedical and drug delivery,” Artif. Cells, Nanomed. Biotechnol. 44, 410–422 (2014).

    Article  Google Scholar 

  9. S. Patra, S. Mukherjee, A. Barui, A. Ganguly, B. Sreedhar, and C. Patra, “Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics,” Mater. Sci. Eng. C 53, 298–309 (2015).

    Article  CAS  Google Scholar 

  10. P. Kesharwani, H. Choudhury, J. Meher, M. Pandey, and B. Gorain, “Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging,” Prog. Mater. Sci. 103, 484–508 (2019).

    Article  CAS  Google Scholar 

  11. D. Cassano et al., “Biodegradable ultrasmall-in-nano gold architectures: Mid-period in vivo distribution and excretion assessment,” Part. Part. Syst. Charact. 1800464, 1–5 (2018).

    Google Scholar 

  12. T. Limongi, M. Canta, L. Racca, A. Ancona, S. Tritta, and V. Cauda, “Improving dispersal of therapeutic nanoparticles in the human body,” Nanomedicine 14, 797–801 (2019).

    Article  CAS  Google Scholar 

  13. H. Azamal and I. Muhammad, Nanomaterials and Plant Potential (Springer, Switzerland, 2019).

    Google Scholar 

  14. M. Celentano et al., “Diffusion limited green synthesis of ultra-small gold nanoparticles at room temperature,” Colloids Surf., A 558, 548–557 (2018).

    Article  CAS  Google Scholar 

  15. A. M. Gamal-Eldeen et al., “Gum arabic-encapsulated gold nanoparticles for a non-invasive photothermal ablation of lung tumor in mice,” Biomed. Pharmacother. 89, 1045–1054 (2017).

    Article  CAS  Google Scholar 

  16. T. Weil et al., “NIR-emitting and photo-thermal active nanogold as mitochondria-specific probes,” Biomater. Sci. 5, 966–971 (2017).

    Article  Google Scholar 

  17. I. Lázár and H. Szabó, “Prevention of the aggregation of nanoparticles during the synthesis of nanogold-containing silica aerogels,” Gels 4, 55 (2018).

    Article  Google Scholar 

  18. H. Tsai, P. F. Hsiao, S. Peng, T. Tang, and S. Lin, “Enhancing the in vivo transdermal delivery of gold nanoparticles using poly(ethylene glycol) and its oleylamine conjugate,” Int. J. Nanomed. 11, 1867–1878 (2016).

    Article  Google Scholar 

  19. G. Brancolini and V. Tozzini, “Multiscale modeling of proteins interaction with functionalized nanoparticles,” Curr. Opin. Colloid Interface Sci. 41, 66–73 (2019).

    Article  CAS  Google Scholar 

  20. M. Teimouri et al., “Gold nanoparticles fabrication by plant extracts: Synthesis, characterization, degradation of 4-nitrophenol from industrial wastewater, and insecticidal activity—A review,” J. Clean. Prod. 184, 740–753 (2018).

    Article  CAS  Google Scholar 

  21. M. Sengani, A. Grumezescu, and V. Rajeswari, “Recent trends and methodologies in gold nanoparticle synthesis—A prospective review on drug delivery aspect,” Open Nano 2, 37–46 (2017).

    Google Scholar 

  22. P. Bergese and K. Hamad-Schifferli, Nanomaterial Interfaces in Biology. Methods and Protocols, 1st ed., Vol. 1025 of Methods in Molecular Biology (Humana Press, Totowa, NJ, 2013).

  23. S. T. Kim, K. Saha, C. Kim, and V. M. Rotello, “The role of surface functionality in determining nanoparticle cytotoxicity,” Acc. Chem. Res. 46, 681–691 (2013).

    Article  CAS  Google Scholar 

  24. R. Handy, F. von der Kammer, J. Lead, M. Hassellöv, R. Owen, and M. Crane, “The ecotoxicology and chemistry of manufactured nanoparticles,” Ecotoxicology 17, 287–314 (2008).

    Article  CAS  Google Scholar 

  25. D. B. Warheit, “Debunking some misconceptions about nanotoxicology,” Nano Lett. 10, 4777–4782 (2010).

    Article  CAS  Google Scholar 

  26. L. Packer, E. H. Witt, and H. J. Tritschler, “Alpha-lipoic as a biologycal antioxydant,” Free Radic. Biol. Med. 19, 227–250 (1995).

    Article  CAS  Google Scholar 

  27. W. Haiss, N. T. K. Thanh, J. Aveyard, and D. G. Fernig, “Determination of size and concentration of gold nanoparticles from UV–Vis spectra,” Anal. Chem. 79, 4215–4221 (2007).

    Article  CAS  Google Scholar 

  28. B. Varnholt, P. Oulevey, S. Luber, C. Kumara, A. Dass, and T. Bürgi, “Structural information on the Au–S interface of thiolate-protected gold clusters: A Raman spectroscopy study,” J. Phys. Chem. C 118, 9604–9611 (2014).

    Article  CAS  Google Scholar 

  29. G. Socrates, Infrared and Raman Characteristics Group Frequencies, 3rd ed. (Wiley, Hoboken, NJ, 2001).

    Google Scholar 

  30. D. Divakaran, J. R. Lakkakula, M. Thakur, M. Kumar, and R. Srivastava, “Dragon fruit extract capped gold nanoparticles: Synthesis and their differential cytotoxicity effect on breast cancer cells,” Mater. Lett. 236, 498–502 (2019).

    Article  CAS  Google Scholar 

  31. M. Noruzi, D. Zare, K. Khoshnevisan, and D. Davoodi, “Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature,” Spectrochim. Acta, Part A 79, 1461–1465 (2011).

    Article  CAS  Google Scholar 

  32. S. Enanv, H. Medical, S. Ab, and S. Bertling, Int. Standard 2009 (2009).

  33. S. K. Misra et al., “Characterization of carbon nanotube (MWCNT) containing P(3HB)/bioactive glass composites for tissue engineering applications,” Acta Biomater. 6, 735–742 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are indebted to Dr. M. Pérez-González, S.A. Tomás, and Dr. Genoveva Hernández-Padrón for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Castaño.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornejo-Monroy, D., Sánchez-Santamaria, B., Martínez-Gómez, E.A. et al. Facile Synthesis of Ultrasmall, Highly Stable, and Biocompatible Gold Nanoparticles Stabilized with Lipoic Acid: Cytotoxicity and Structural Characterization. Nanotechnol Russia 14, 607–612 (2019). https://doi.org/10.1134/S199507801906003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801906003X

Navigation