Skip to main content
Log in

MICROSIZE ENERGY SOURCES FOR IMPLANTABLE AND WEARABLE MEDICAL DEVICES

  • REVIEWS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The creation of implantable devices that support the functioning of the body is an important area in the field of medical technology. Many of these devices require a power supply, and it is desirable that such sources work during the entire period of implantation, even in the case of a lifelong implant installation. The published data on energy sources for powering implantable and wearable medical devices is reviewed. A comparative assessment of the characteristics of biofuel cells as the most developed version of an implantable energy source with other renewable sources of electric energy based on thermo-, piezo-, electrostatic (ES), magneto-, and photo-converters is given. Particular attention is paid to the use of implantable devices that can serve as a source of energy for low-power systems: micropumps, pacemakers, neuroimplants, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Rasmussen, S. Abdellaoui, and S. D. Minteer, Biosens. Bioelectron. 76, 91 (2016).

    CAS  Google Scholar 

  2. A. J. Slate, K. A. Whitehead, D. A. C. Brownson, and C. E. Banks, Renewable Sustainable Energy Rev. 101, 60 (2019).

    CAS  Google Scholar 

  3. A. Nasar and R. Perveen, Int. J. Hydrogen Energy 44, 15287 (2019).

    CAS  Google Scholar 

  4. A. N. Reshetilov and T. A. Reshetilova, Istor. Nauki Tekh., No. 1, 65 (2017).

  5. G. Justin, Y. Zhang, X. Cui, et al., J. Biol. Eng. 5, 5 (2011). https://doi.org/10.1186/1754-1611-5-5

    Article  CAS  Google Scholar 

  6. https: // uskudar.edu.tr/en/icerik/3553/turkish-scientists-developed-biofuel-cell-that-generates-electricity-with-human-neural-stem-cell. Accessed December 25, 2019.

  7. S. Ahmed and L. Sungjoon, Biosens. Bioelectron. 141, 1114 (2019).

    Google Scholar 

  8. T. Ray, J. Choi, J. Reeder, et al., Curr. Opin. Biomed. Eng. 9, 47 (2019).

    Google Scholar 

  9. D. Eddelman, J. Wewel, R. M. Wiet, et al., Surg. Neurol. Int. 8, 11830 (2017).

    Google Scholar 

  10. D. R. Kipke, W. Shain, E. Fetz, et al., J. Neurosci. 28, 11830 (2008).

    CAS  Google Scholar 

  11. C. A. Edwards, A. Kouzani, K. H. Lee, and E. K. Ross, Mayo Clin. Proc. 92, 1427 (2017).

    Google Scholar 

  12. A. T. Hadsell and P. S. Malchesky, Artif. Organs 41, 276 (2017).

    Google Scholar 

  13. J. A. Cook, K. B. Shah, M. A. Quader, et al., J. Thorac Dis. 7, 2172 (2015).

    Google Scholar 

  14. S. W. Lee, F. Fallegger, B. D. F. Casse, and S. I. Fried, Sci. Adv. 2 (12), e1600889 (2016). https://doi.org/10.1126/sciadv.1600889

    Article  CAS  Google Scholar 

  15. D. L. Hayes and S. Furman, Pacing Clin. Electrophysiol. 27, 693 (2004).

    Google Scholar 

  16. D. Marioli, E. Sardini, and M. Serpelloni, in Proceedings of the IEEE International Symposium on Medical Measurements and Applications (MeMeA),2015, p. 462. https://doi.org/10.1109/MeMeA.2015.7145248

  17. S. K. Sinha, J. Chrispin, A. Barth, et al., Pacing Clin. Electrophysiol. 40, 969 (2017).

    Google Scholar 

  18. C. F. Holmes, ECS Trans. 6, 1 (2007).

    CAS  Google Scholar 

  19. M. B. Alam, M. B. Munir, R. Rattan, et al., EP Europace 16, 246 (2014).

    Google Scholar 

  20. N. Li, Z. Yi, Y. Ma, et al., ACS Nano 13, 2822 (2019).

    CAS  Google Scholar 

  21. A. K. Helmers, I. Lübbing, G. Deuschl, et al., Neuromodulation 21, 593 (2017).

    Google Scholar 

  22. J. Katic, “Efficient energy harvesting interface for implantable biosensors,” Doctoral PHD Dissertations (KTH School Inform. Commun. Technol., Sweden, 2015).

    Google Scholar 

  23. E. Jalilian, D. Onen, E. Neshev, and M. P. Mintchev, Medical Eng. Phys. 29, 238 (2007).

    Google Scholar 

  24. C. R. Ellis, D. I. Dickerman, J. M. Orton, et al., Pacing Clin. Electrophysiol. 39, 658 (2016).

    Google Scholar 

  25. M. Biffi, M. Bertini, D. Saporito, et al., Pacing Clin. Electrophysiol. 32, 346 (2009).

    Google Scholar 

  26. C. Dagdeviren, Z. Li, and Z. L. Wang, Ann. Rev. Biomed. Eng. 19, 85 (2017).

    CAS  Google Scholar 

  27. A. Ben Amar, A. B. Kouki, and H. Cao, Sensors 15, 28889 (2015).

    Google Scholar 

  28. M. A. Hannan, S. Mutashar, S. A. Samad, and A. Hussain, Biomed. Eng. 13, 79 (2014).

    Google Scholar 

  29. Y. Xu, P. Chen, J. Zhang, et al., Angew. Chem., Int. Ed. Engl. 56, 12940 (2017).

    CAS  Google Scholar 

  30. J. K. Moon, J. Jeong, D. Lee, and H. K. Pak, Nat. Commun. 4, 1486 (2013).

    Google Scholar 

  31. V. Parsonnet, J. Driller, D. Cook, and S. Rizvi, PACE 29, 195 (2006).

    Google Scholar 

  32. P. Makaram, D. Owens, and J. Aceros, Diagnostics 4, 27 (2014).

    Google Scholar 

  33. E. W. Nery, M. Kundys, P. S. Jeleń, and M. Jönsson-Niedziółka, Anal. Chem. 88, 11271 (2016).

    Google Scholar 

  34. M. Falk, V. Andoralov, Z. Blum, et al., Biosens. Bioelectron. 37, 38 (2012).

    CAS  Google Scholar 

  35. R. C. Reid, S. D. Minteer, and B. K. Gale, Biosens. Bioelectron. 68, 142 (2015).

    CAS  Google Scholar 

  36. R. C. Reid, S. R. Jones, D. P. Hickey, et al., Electrochim. Acta 203, 30 (2016).

    CAS  Google Scholar 

  37. R. A. Escalona-Villalpo, R. C. Reid, R. D. Milton, et al., J. Power Sources 342, 546 (2017).

    Google Scholar 

  38. W. Z. Jia, G. Valdes-Ramirez, A. J. Bandodkar, et al., Angew. Chem., Int. Ed. 52, 7233 (2013).

    CAS  Google Scholar 

  39. A. J. Bodkar, J. M. You, and N. H. Kim, et al., Energy Environ. Sci. 10, 1581 (2017). https://doi.org/10.1039/c7ee00865a

    Article  Google Scholar 

  40. E. Cho, M. Mohammadifar, and S. Choi, Micromachines 8, 265 (2017). https://doi.org/10.3390/mi8090265

    Article  Google Scholar 

  41. X. Chen, L. Yin, J. Lv, et al., Adv. Function. Mater. 2019, 1905785 (2019). https://doi.org/10.1002/adfm.201905785

    Article  CAS  Google Scholar 

  42. A. J. Bandodkar and J. Wang, Trends Biotechnol. 32, 363 (2014).

    CAS  Google Scholar 

  43. Q. Zhai and W. Cheng, Mater. Today Nano 7, 100041 (2019). https://doi.org/10.1016/j.mtnano.2019.100041

    Article  Google Scholar 

  44. P. Cinquin, C. Gondran, F. Giroud, et al., PLoS One 5, e10476 (2010).

    Google Scholar 

  45. L. Halámková, J. Halámek, V. Bocharova, et al., J. Am. Chem. Soc. 134, 5040 (2012).

    Google Scholar 

  46. A. Szczupak, J. Halamek, L. Halámková, et al., Energy Environ. Sci. 5, 8891 (2012).

    CAS  Google Scholar 

  47. F. C. P. F. Sales, R. M. Iost, M. V. A. Martins, et al., Lab Chip. 13, 468 (2013).

    CAS  Google Scholar 

  48. M. Cadet, S. Gounel, C. Stines-Chaumeil, et al., Biosens. Bioelectron. 83, 60 (2016).

    CAS  Google Scholar 

  49. D. Pankratov, L. Ohlsson, P. Gudmundsson, et al., RSC Adv. 6, 70215 (2016).

    CAS  Google Scholar 

  50. M. Rasmussen, R. E. Ritzmann, I. Lee, et al., J. Am. Chem. Soc. 134, 1458 (2012).

    CAS  Google Scholar 

  51. J. A. Castorena-Gonzalez, C. Foote, K. MacVittie, et al., Electroanal. 25, 1579 (2013).

    CAS  Google Scholar 

  52. S. El Ichi, A. Zebda, J. P. Alcaraz, et al., Energy Environ. Sci. 8, 1017 (2015).

    CAS  Google Scholar 

  53. S. El Ichi-Ribault, J. P. Alcaraz, F. Boucher, et al., Electrochim. Acta 269, 360 (2018).

    CAS  Google Scholar 

  54. A. N. Reshetilov, Yu. V. Plekhanova, S. E. Tarasov, et al., Vestn. Biotekhnol. Fiz.-Khim. Biol. im. Yu. A. Ov-chinnikova 11 (2), 5 (2015).

    Google Scholar 

  55. E. Katz, Bioelectron. Med. 2, 1 (2015).

    Google Scholar 

  56. V. Andoralov, M. Falk, D. B. Suyatin, et al., Sci. Rep. 20, 3270 (2013).

    Google Scholar 

  57. A. K. Shukla, P. Suresh, S. Berchmans, and A. Rajendran, Curr. Sci. 87, 455 (2004).

    CAS  Google Scholar 

  58. A. N. Reshetilov, Yu. V. Plekhanova, S. E. Tarasov, et al., RF Patent No. 2599421, Request No. 2016106824 (2016).

  59. S. Cosnier, A. le Goff, and M. Holzinger, Electrochem. Commun. 38, 19 (2014).

    CAS  Google Scholar 

  60. C. Gonzalez-Solino and M. di Lorenzo, Biosensors 8, 11 (2018). https://doi.org/10.3390/bios8010011

    Article  CAS  Google Scholar 

  61. M. Gamella, A. Koushanpour, and E. Katz, Bioelectrochemistry 119, 33 (2018).

    CAS  Google Scholar 

  62. K. Sarkar, Y. Xue, and S. Sant, “Host response to synthetic versus natural biomaterials,” in The Immune Response to Implanted Materials and Devices, Ed. by B. Corradetti (Springer Int., Switzerland, 2017).

    Google Scholar 

  63. A. Nagpal, L. M. Baddour, and M. R. Sohail, Circul.: Arrhythm. Electrophysiol. 5, 433–441 (2012).

    Google Scholar 

  64. E. P. Ivanova, K. Bazaka, and R. Crawford, New Functional Biomaterials for Medicine and Healthcare (Woodhead, Cambridge, 2014).

    Google Scholar 

  65. L. Barnes and I. R. Cooper, Biomaterials and Medical Device—Associated Infections, 1st ed. (Woodhead, Cambridge, 2015).

    Google Scholar 

  66. Y. Cha, J. Hong, J. Lee, et al., Sensors 16, 1045 (2016). https://doi.org/10.3390/s16071045

    Article  Google Scholar 

  67. J. Chun, N. R. Kang, J. Y. Kim, et al., Nano Energy 11, 1 (2015).

    CAS  Google Scholar 

  68. K. Li, Q. He, J. Wang, et al., Microsyst. Nanoeng. 4, 24 (2018). https://doi.org/10.1038/s41378-018-0024-3

    Article  Google Scholar 

  69. M. Hyl, H. Hunter, and J. Liu, et al., Appl. Energy 182, 518 (2016).

    Google Scholar 

  70. X. Pu, L. Li, H. Song, et al., Adv. Mater. 27, 2472 (2015).

    CAS  Google Scholar 

  71. W. Yang, J. Chen, G. Zhu, et al., ACS Nano 7, 11317 (2013).

    CAS  Google Scholar 

  72. W. Qiu, Z. Hu, and L. Xiao, Preprints No. 2019090041 (2019). https://doi.org/10.20944/preprints201909.0041.v1

  73. P. Jokic and M. Magno, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS),2017. https://doi.org/10.1109/iscas.2017.8050615

  74. C. G. Nuñez, W. T. Navaraj, E. O. Polat, and R. Dahiya, Adv. Funct. Mater. 27, 1606287 (2017). https://doi.org/10.1002/adfm.201606287

    Article  CAS  Google Scholar 

  75. A. R. M. Siddique, S. Mahmud, and B. van Heyst, Renewable Sustainable Energy Rev. 73, 730 (2017).

    Google Scholar 

  76. V. Leonov, ISRN Renew. Energy. 2011, 785380 (2011). https://doi.org/10.5402/2011/785380

    Article  Google Scholar 

  77. S. Vostrikov, A. Somov, and P. Gotovtsev, Appl. Energy 255, 113786 (2019).

    Google Scholar 

  78. M. Lossec, B. Multon, H. Ben Ahmed, and C. Goupil, Eur. Phys. J. Appl. Phys. 52, 11103 (2010). https://doi.org/10.1051/epjap/2010121

    Article  Google Scholar 

  79. J. H. Bahk, H. Fang, K. Yazawa, and A. Shakouri, J. Mater. Chem. C 3, 10362 (2015).

    CAS  Google Scholar 

  80. L. Francioso, C. de Pascali, V. Sglavo, et al., Energy Convers. Manage. 145, 204 (2017).

    CAS  Google Scholar 

  81. K. Yazawa and A. Shakouri, in Proceedings of the 15th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, USA, May 31–June 3,2016, p. 1482.

  82. T. Zhang, Energy Convers. Manage. 112, 404 (2016).

    Google Scholar 

  83. K. Pietrzyk, J. Soares, B. Ohara, and H. Lee, Appl. Energy 183, 218 (2016).

    CAS  Google Scholar 

  84. A. Rezania, K. Yazawa, L. A. Rosendahl, and A. Shakouri, Int. J. Therm. Sci. 72, 73 (2013).

    Google Scholar 

  85. A. Rezania, L. A. Rosendahl, and H. Yin, J. Power Sources 255, 151 (2014).

    CAS  Google Scholar 

  86. Y. K. Ramadass and A. P. Chandrakasan, IEEE Int. Solid-State Circuits Conf. 53, 486 (2010).

  87. J. P. Im, S. W. Wang, K. H. Lee, et al., IEEE J. Solid-State Circuits Conf. 47, 3055 (2012).

  88. P. S. Weng, H. Y. Tang, P. C. Ku, and L. H. Lu, IEEE J. Solid-State Circuits Conf. 48, 1031 (2013).

  89. M. Thielen, L. Sigrist, M. Magno, et al., Energy Convers. Manage. 131, 44 (2017).

    Google Scholar 

  90. S. Y. Tsui, X. Li, and W. H. Ki, Found. Trends Electron. Des. Autom. 7, 179 (2013).

    Google Scholar 

  91. S. Meninger, J. O. Mur-Mira, and R. Amirtharajah, et al., IEEET VLSI Syst. 9, 64 (2001).

    Google Scholar 

  92. R. Tashiro, N. Kabei, K. Katayama, et al., J. Artif. Organs 5, 239 (2002).

    Google Scholar 

  93. R. Tashiro, N. Kabei, H. Kotera, et al., Trans. Jpn. Soc. Mech. Eng. C 67, 2307 (2001).

    Google Scholar 

  94. Y. R. Lee, J. H. Shin, I. S. Park, et al., Sens. Actuators, A 231 (15), 8 (2015).

    CAS  Google Scholar 

  95. J. Feng, M. Graf, K. Liu, et al., Nature (London, U.K.). 536, 197 (2016).

    CAS  Google Scholar 

  96. E. Shahhaidar, O. Boric-Lubecke, R. Ghorbani, and M. Wolfe, in Proceedings of the IEEE Power and Energy Conference, Illinois,2011. https://doi.org/10.1109/peci.2011.5740494

  97. A. Nasiri, S. Member, S. A. Zabalawi, et al., IEEE Trans. Power Electron. 26, 192 (2011).

    Google Scholar 

  98. R. Parsons, Chem. Rev. 90, 813 (1990).

    CAS  Google Scholar 

  99. Z. Song, “Electrokinetic flow in a nanochannel with an overlapped electrical double layer,” PhD Dissertation (Mech. Eng. Logan, Utah, USA, 2015). https://digitalcommons.usu.edu/etd/4271.

  100. J. Yin, X. Li, J. Yu, et al., Nat. Nanotechnol. 9, 378 (2014).

    CAS  Google Scholar 

  101. D. H. Huynh, T. C. Nguyen, P. D. Nguyen, et al., Sci. Rep. 6 (1) (2016). https://doi.org/10.1038/srep26708

  102. J. Liu, L. Dai, and J. W. Baur, J. Appl. Phys. 101, 064312 (2007). https://doi.org/10.1063/1.2710776

    Article  CAS  Google Scholar 

  103. C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed, The Mechanics of the Circulation (Oxford Univ. Press, Oxford, 1978).

    Google Scholar 

  104. E. Francisco, D. Cruz, Y. Zheng, et al., Int. J. Electrochem. Sci. 7, 3577 (2012).

    Google Scholar 

  105. T. Horii, H. Hikawa, Y. Mochizuki, and H. Okuzaki, Trans. Mater. Res. Soc. Jpn. 37, 515 (2012).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-23024 mk.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Plekhanova or A. N. Reshetilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plekhanova, Y.V., Tarasov, S.E., Somov, A.S. et al. MICROSIZE ENERGY SOURCES FOR IMPLANTABLE AND WEARABLE MEDICAL DEVICES. Nanotechnol Russia 14, 511–522 (2019). https://doi.org/10.1134/S1995078019060144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019060144

Navigation