Skip to main content
Log in

Conditions for Stabilization of Average Global Surface Temperature at the Levels of +2°C and +1.5°C by the Geoengineering Method Based on Stratospheric Aerosols

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The method of stratospheric aerosols (SA) is considered. This is one of the geoengineering methods, which can be used as a supplementary method to stabilize global temperature at the levels accepted by the Paris Agreement in 2015. It is shown that the application of the SA method could keep global temperature at the levels of +2 and +1.5°С above the preindustrial value, which is calculated in the present paper as the mean over the period of 1800–1850. Maintaining global temperature below +2°С till the end of the 21st century under the most conservative greenhouse gas emission scenario (RCP8.5) could require applying the method of stratospheric aerosols in 2041. The stabilization of global temperature at the level of +1.5°С under the same scenario could require the earlier start the SA method application, in 2023. The maximum value of the annual emission of sulfur compounds reached in 2100 under the worst scenarios of greenhouse gas concentration growth will be within the range of 2–5 Mt S, which is several times lower than the Pinatubo SO2 emission in 1991. The model simulations demonstrate that the stabilization of global temperature at the level of +1.5°С by solar radiation modification methods alone is almost unreal. In this case, it would be necessary to start the application of the SA method in three years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. I. Budyko, “Method of the Impact on Climate,” Meteorol. Gidrol., No. 2 (1974) [in Russian].

  2. E. M. Volodin and N. A. Dianskii, “Simulation of Climate Changes in the 20th–22nd Centuries with a Coupled Atmosphere−Ocean General Circulation Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 42 (2006) [Izv., Atmos. Oceanic Phys., No. 3, 42 (2006)].

  3. E. M. Volodin, S. V. Kostrykin, and A. G. Ryaboshapko, “Simulation of Climate Change Induced by Injection of Sulfur Compounds into the Stratosphere,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 47 (2011) [Izv., Atmos. Oceanic Phys., No. 4, 47 (2011)].

  4. E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykosov, A. S. Gritsun, N. A. Dianskii, A. V. Gusev, and N. G. Yakovlev, “Simulation of Modern Climate with the INMCM5 Climate Model,” in Mathematical Modeling of the Terrestrial System (MAKS PRESS, Moscow, 2016).

  5. Yu. A. Izrael, E. M. Volodin, S. V. Kostrykin, A. P. Revokatova, and A. G. Ryaboshapko, “Possibility of Geoengineering Stabilization of Global Temperature in the 21st Century Using the Stratospheric Aerosol and Estimation of Potential Negative Effects,” Meteorol. Gidrol., No. 6 (2013) [Russ. Meteorol. Hydrol., No. 6, 38 (2013)].

  6. A. G. Ryaboshapko, “Atmospheric Cycle of Sulfur,” in Global Biogeochemical Cycle of Sulfur and Anthropogenic Impact on It (Nauka, Moscow, 1983) [in Russian].

  7. A. G. Ryaboshapko, V. A. Ginzburg, and A. P. Revokatova, “Prospects of Stabilization of Global Surface Air Temperature at an Acceptable Level,” Fundamental’naya i Prikladnaya Klimatologiya, No. 4 (2017) [in Russian].

  8. A. G. Ryaboshapko, S. V. Kostrykin, I. O. Bushmelev, and A. P. Revokatova, “On the Possibility of Simultaneous Solution to the Problems of the Arctic Climate Protection and Air Pollution Reduction in Norilsk,” Fundamental’naya i Prikladnaya Klimatologiya, No. 1 (2017) [in Russian].

  9. F. Arfeuille, D. Weisenstein, H. Mack, E. Rozanov, T. Peter, and S. Bronnimann, “Volcanic Forcing for Climate Modeling: A New Microphysics-based Data Set Covering Years 1600–Present,” Climate Past, 10 (2014).

  10. M. Berdahl, A. Robock, D. Ji, J. C. Moore, A. B. Jones, B. Kravitz, and S. Watanabe, “Arctic Cryosphere Response in the Geoengineering Model Intercomparison Project G3 and G4 Scenarios,” J. Geophys. Res. Atmos., 119 (2014).

  11. G. J. S. Bluth, S. D. Doiron, A. J. Krueger, L. S. Walter, and C. C. Schnetzler, “Global Tracking of the SO2 Clouds from the June 1991 Mount Pinatubo Eruptions,” Geophys. Res. Lett., No. 2, 19 (1992).

  12. K. S. Carslaw, B. Luo, and T. Peter, “An Analytical Expression for the Composition of Aqueous HNO3–H2SO4 Stratospheric Aerosols Including Gas Phase Removal of HNO3,” Geophys. Res. Lett., 22 (1995).

  13. E. J. Davis and G. Scheiger, The Airborne Microparticle: Its Physics, Chemistry, Optics and Transport Phenomena (Springer, Berlin, 2002).

  14. P. Heckendorn, D. K. Weisenstein, S. A. Fueglistaler, B. P. Luo, E. Rozanov, M. Schraner, L. W. Thomason, and T. Peter, “The Impact of Geoengineering Aerosols on Stratospheric Temperature and Ozone,” Environ. Res. Lett., No. 4, 4 (2009).

  15. G. Heutel, J. Moreno-Cruz, and K. Ricke, “Climate Engineering Economics,” Annu. Rev. Resour. Econ., 8 (2016).

  16. P. Irvine, B. Kravitz, M. G. Lawrence, D. Gerten, C. Caminade, S. Gosling, E. Hendy, B. Kassie, D. W. Kissling, H. Muri, A. Oschlies, and S. J. Smith, “Towards a Comprehensive Climate Impacts Assessment of Solar Geoengineering,” Earth’s Future, 5 (2017).

  17. Yu. A. Izrael, E. M. Volodin, S. V. Kostrykin, A. P. Revokatova, and A. G. Ryaboshapko, “The Ability of Stratospheric Climate Engineering in Stabilizing Global Mean Temperatures and an Assessment of Possible Side Effects,” Atmos. Sci. Lett., 15 (2014).

  18. A. C. Jones, M. Hawcroft, J. M. Haywood, A. Jones, X. Guo, and J. C. Moore, “Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering,” Earth’s Future, 6 (2018).

  19. D. W. Keith and D. G. MacMartin, “A Temporary, Moderate and Responsive Scenario for Solar Geoengineering,” Nature Climate Change,5 (2015).

  20. P. Koepke, M. Hess, I. Schult, and E. Shettle, Global Aerosol Data Set, Tech. Report Max Planck Institute for Meteorology, No. 243 (1997).

  21. D. G. MacMartin, K. Caldeira, and D. W. Keith, “Solar Geoengineering to Limit the Rate of Temperature Change,” Phil. Trans. Soc. A: Math., Phys., Eng. Sci., 372 (2014).

  22. D. G. , K. L. , and D. W. “Solar Geoengineering as Part of an Overall Strategy for Meeting the 1.5°C Paris Target,” https://www.ncbi.nlm.nih.gov/pubmed/29610384, Phil. Trans. Sov. A: Math., Phys., Eng. Sci., 376 (2018).

  23. J. C. Moore, S. Jevrejeva, and A. Grinsted, “Efficacy of Geoengineering to Limit 21st Century Sea-level Rise,” Proc. Nat. Acad. Sci., No. 36, 107 (2010).

  24. R. Moss, M. Babiker, S. Brinkman, E. Calvo, T. Carter, J. Edmonds, I. Elgizouli, S. Emori, L. Erda, K. Hibbard, R. Jones, M. Kainuma, J. Kelleher, J. F. Lamarque, M. Manning, B. Matthews, J. Meehl, L. Meyer, J. Mitchell, N. Nakicenovic, B. O’Neill, R. Pichs, K. Riahi, S. Rose, P. Runci, R. Stouffer, D. van Vuuren, J. Weyant, T. Wilbanks, J. P. van Ypersele, and M. Zurek, Towards New Scenarios for Analysis of Emissions. Climate Change, Impacts, and Response Strategies (IPCC, Geneva, 2008).

  25. NAS, Climate Intervention: Reflecting Sunlight to Cool the Earth (The National Academic Press, Washington, D.C., 2015), http://www.nap.edu/.

  26. M. Plazzotta, R. Seferian, H. Douville, B. Kravitz, and J. Tjiputra, “Land Surface Cooling Induced by Sulfate Geoengineering Constrained by Major Volcanic Eruptions,” Geophys. Res. Lett.,45 (2018).

  27. Ph. J. Rasch, S. Tilmes, R. P. Turco, A. Robock, L. Oman, С.-С. Chen, G. L. Stenchikov, and R. R. Garcia, “An Overview of Geoengineering of Climate Using Stratospheric Sulphate Aerosols,” Phil. Trans. Roy. Soc. A, 366 (2008).

  28. A. Revokatova, H. Coninck, P. Forster, V. Ginzburg, J. Kala, D. Liverman, M. Plazzotta, R. Seferian, S. I. Seneviratne, and J. Sillmann, “Solar Radiation Modification in the Context of 1.5°C Mitigation Pathways,” inGlobal Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Ed. by V. Masson-Delmotte, P. Zhai, H. O. Portner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Pean, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield, Chapter 4, Cross-chapter box 10 (2018).

  29. A. Robock, “20 Reasons Why Geoengineering May be a Bad Idea,” Bull. Atomic Scientists, No. 2, 64 (2008).

  30. A. Robock, L. Oman, and G. L. Stenchikov, “Regional Climate Responses to Geoengineering with Tropical and Arctic SO2 Injections,” J. Geophys. Res. Atmos., 113 (2008).

  31. J. Rogelj, D. Shindell, K. Jiang, S. Fifita, P. Forster, V. Ginzburg, C. Handa, H. Kheshgi, S. Kobayashi, E. Kriegler, L. Mundaca, R. Seferian, and M. V. Vilarino, “Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development,” in Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (2018).

  32. Geoengineering the Climate: Science, Governance and Uncertainty (Royal Society, 2009).

  33. The Crust, Vol. 3, Ed. by R. L. Rudnick (2005).

  34. J. H. Seinfeld and S. N. Pandis, “Atmospheric Chemistry and Physics,” in Air Pollution to Climate Change (2016).

  35. G. Song, G. J. S. Bluth, W. I. Rose, I. M. Watson, and A. J. Prata, “Re-evaluation of SO2 Release of the 15 June 1991 Pinatubo Eruption Using Ultraviolet and Infrared Satellite Sensors,” Geochemistry, Geophysics, Geosystems, No. 4, 5 (2004).

  36. S. Tilmes, B. M. M. Sanderson, and B. C. O’Neill, “Climate Impacts of Geoengineering in a Delayed Mitigation Scenario,” Geophys. Res. Lett., No. 15, 43 (2016).

  37. C. H. Trisos, G. Amatulli, J. Gurevitch, A. Robock, L. Xia, and B. Zambri, “Potentially Dangerous Consequences for Biodiversity of Solar Geoengineering Implementation and Termination,” Nature Ecology & Evolution, No. 3, 2 (2018).

  38. D. Visioni, G. Pitari, V. Aquila, S. Tilmes, I. Cionni, G. di Genova, and E. Mancini, “Sulfate Geoengineering Impact on Methane Transport and Lifetime: Results from the Geoengineering Model Intercomparison Project (GeoMIP),” Atmos. Chem. Phys.,15 (2017).

  39. D. Visioni, G. Pitari, and V. Aquila, “Sulfate Geoengineering: A Review of the Factors Controlling the Needed Injection of Sulfur Dioxide,” Atmos. Chem. Phys., No. 6,17 (2016).

  40. J. M. Wallace and P. V. Hobbs, Atmospheric Science: An Introduction Survey (Elsevier Inc., 2006).

Download references

Funding

The research was performed in the framework of the following themes: Roshydromet Research theme 3.2 “Monitoring of Global Climate and Climate of the Russian Federation and Its Regions, Including the Arctic. Development and Modernization of Monitoring Technologies;” theme on “Plan of Fundamental Science Research of State Academies of Sciences No. 0148-2019-0009, AAAA-A19-119022190173-2 “Climate Changes and Their Consequences for the Environment and Population Activity in Russia.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ginzburg.

Additional information

Russian Text ©The Author(s), 2020, published in Meteorologiya i Gidrologiya, 2020, No. 5, pp. 66–76.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginzburg, V.A., Kostrykin, S.V., Ryaboshapko, A.G. et al. Conditions for Stabilization of Average Global Surface Temperature at the Levels of +2°C and +1.5°C by the Geoengineering Method Based on Stratospheric Aerosols. Russ. Meteorol. Hydrol. 45, 345–352 (2020). https://doi.org/10.3103/S1068373920050052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373920050052

Keywords

Navigation