Skip to main content
Log in

Enhancing the Efficiency of the Reconstruction of the Temperature and Humidity Profiles of the Cloud Atmosphere by the Data of Satellite Microwave Spectrometers

  • STATISTICAL RADIOPHYSICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

It is shown that the a priori data on the atmospheric conditions, in addition to the climate’s characteristics, can enhance the efficiency of the algorithms for reconstructing the atmospheric profiles using satellite microwave radiometric observations. Such additional data are sought and their efficiency in remote sensing is estimated. The possibility of expanding the statistical approach by including new types of a priori data on the temperature and humidity of atmospheric conditions is discussed. It is demonstrated that the developed technique can be used to estimate the efficiency of using the following types of additional a priori data in the statistical regularization method: (i) the covariance matrix of the full vector of temperature and humidity variations within a vertical atmospheric column, (ii) the covariance matrix of the temperature and humidity variations within horizontal atmospheric strata, (iii) physical limits of the humidity variation amplitude, and (iv) statistically average model representations of the microwave radiation transfer parameters in the cloud layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Hereinafter, index k changes from 1 to \(2 \times K\).

  2. EECRA: Extended Edited Synoptic Cloud Reports Archive; https://climatedataguide.ucar.edu/climate-data/extended-edited-synoptic-cloud-reports-archive-eecra-ships-and-land-stations-over-globe.

  3. ISCCP: The International Satellite Cloud Climatology Project; https://isccp.giss.nasa.gov/.

  4. International Cloud Atlas, World Meteorological Organization, 2018; https://cloudatlas.wmo.int/clouds.html.

  5. SeeBor V5.1 Training data set; http://cimss.ssec.wisc.edu/training_data/data/SeeBorV5.1_Training_data_Emis10inf2004.bin.

  6. Wyoming Weather Web, Upperair Air Data; Soundings. http://weather.uwyo.edu/upperair/sounding.html.

REFERENCES

  1. B. G. Kutuza, M. V. Danilychev, and O. I. Yakovlev, Earth Satellite Monitoring: Microwave Radiometry of Atmosphere and Surface (LENAND, Moscow, 2016) [in Russian].

    Google Scholar 

  2. E. A. Lupyan, V. P. Savorskii, Yu. I. Shokin, et al., Sovrem. Probl. Distantsion. Zondir. Zemli iz Kosmosa, 9 (5), 21 (2012).

  3. O. N. Strand and B. R. Westwater, Associat. Comput. Machin. 15, 100 (1968).

    Article  Google Scholar 

  4. V. F. Turchin, V. P. Kozlov, and M. S. Malkevich, Usp. Fiz. Nauk., No. 102, 345 (1970).

  5. I. A. Gorchakova, M. S. Malkevich, and V. F. Turchin, Izv. Akad. Nauk SSSR, Ser. Fiz. Atm. i Okeana, No. 6, 565 (1970).

    Google Scholar 

  6. C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practice (World Scientific, Singapore, 2000).

    Book  Google Scholar 

  7. A. E. Lipton, IEEE Trans. Geosci. Remote Sens. 41, 761 (2003).

    Article  Google Scholar 

  8. B. G. Kutuza, Radio Sci. 38 (3), 12-1 (2003).

    Google Scholar 

  9. A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, et al., Physics of Clouds (Gidrometeoizdat, Leningrad, 1961) [in Russian].

    Google Scholar 

  10. A. Kh. Khrgian, Atmospheric Physics (Gidrometeoizdat, Leningrad, 1969) [in Russian].

    Google Scholar 

  11. V. I. Skatskii, Tr. Inst. Prikl. Geofiziki, No. 13, 43 (1969).

    Google Scholar 

  12. E. M. Feigel’son, Radiant Heat Exchange and Clouds (Gidrometeoizdat, Leningrad, 1970) [in Russian].

    Google Scholar 

  13. S. M. Shmeter, Physics of Convective Clouds (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  14. V. A. Devyatova, Meteorolog. i Gidrolog., No. 8, 26 (1973).

  15. V. A. Devyatova, Tr. GMTs SSSR, No. 148, 73 (1974).

    Google Scholar 

  16. L. P. Bobylev, M. A. Vasishcheva, S. P. Obraztsov, et al., Tr. GGO, Eksperim. Geofiz., No. 328, 22 (1975).

  17. M. A. Vasishcheva and G. G. Shchukin, Experimental Cloud Water Studies. Statistical Models of the Atmosphere. Ser. Meteorology (VNIIGMI-MTsD, Obninsk, 1976) [in Russian].

  18. L. S. Dubrovina, Clouds and Precipitation Supplied by Aircraft Sensing (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  19. I. P. Mazin and A. Kh. Khrgian, Clouds and Cloud Atmosphere. Reference Book (Gidrometeoizdat, Leningrad, 1989) [in Russian].

    Google Scholar 

  20. D. P. Bespalov, A. M. Devyatkin, Yu. A. Dovgalyuk, et al., Atlas of Clouds (Glav. Geofiz. Observ., S. Peterburg, 2011) [in Russian].

  21. A. B. Akvilonova and B. G. Kutuza, Radiotekh. Elektron. (Moscow) 23, 1792 (1978).

    Google Scholar 

  22. F. Ya. Voit and I.P. Mazin, Izv. AN SSSR. Ser. Fiz. Atm. i Okeana 8, 1166 (1972).

    Google Scholar 

  23. L. S. Dubrovina, Tr. VNIIGMI-MTsD, No. 7, 3 (1974).

    Google Scholar 

  24. L. I. Koprova and V. G. Boldyrev, Izv. AN SSSR. Ser. Fiz. Atm. i Okeana 6, 154 (1970).

    Google Scholar 

  25. A. E. Basharinov, A. S. Gurvich, and S. T. Egorov, Radio Emission of the Earth as a Planet (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  26. A. E. Basharinov and B. G. Kutuza, Trudy GGO im. A.I. Voeikova, No. 222, 100 (1968).

    Google Scholar 

  27. S. A. Buehler, P. Eriksson, T. Kuhn, et al., J. Quant. Spectrosc. and Radiat. Transfer 91 (1), 65 (2005).

    Article  Google Scholar 

  28. P. Eriksson, S. A. Buehler, C. P. Davis, et al., J. Quant. Spectrosc. and Radiat. Transfer 112 (10), 1551 (2011).

    Article  Google Scholar 

  29. ARTS User Guide, Eds. by P. Ericsson and S. Buehler (2017). https://www.radiativetransfer.org/misc/arts-doc/uguide/arts_user.pdf.

  30. E. E. Borbas, S. W. Seemann, H. L. Huang, et al., in Proc. XIV Int. ATOVS Study Conf., Beijing, China, May 25–31,2005 (Univ. Wisconsin-Madison, Madison, 2005), pp. 763–770.

Download references

Funding

This study was carried out in the state assignment, theme no. 0030-2019-0008 “Space.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Savorskiy.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savorskiy, V.P., Kutuza, B.G., Akvilonova, A.B. et al. Enhancing the Efficiency of the Reconstruction of the Temperature and Humidity Profiles of the Cloud Atmosphere by the Data of Satellite Microwave Spectrometers. J. Commun. Technol. Electron. 65, 792–799 (2020). https://doi.org/10.1134/S1064226920070104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920070104

Navigation