Skip to main content
Log in

Preparation of TiO2/Sponge Composite for Photocatalytic Degradation of 2,4,6-Trichlorophenol

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Photocatalysis has emerged as a promising approach for treating environmental pollution. In this study, TiO2/sponge composites with good photocatalytic activity in visible light were prepared via a simple and efficient low-temperature process and applied to the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) present in papermaking wastewater. The process conditions for preparing TiO2/sponge composites were optimized by varying the TiO2 dosage, cellulose dosage, and surfactant concentration. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) results showed that TiO2 successfully adhered to the sponge surface and that the composites achieved a good recycling effect. Degradation occurred under visible light, and a degradation rate of 81% for 2,4,6-TCP with initial concentration of 20 mg/L was achieved in 4 h. The fragments were analyzed using ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS), which revealed the formation of 2-hydroxyvaleric acid (2-HVA) as a degradation product; a possible degradation mechanism is proposed to interpret these findings. Visible-light photocatalysis shows high potential for the rapid and environmentally friendly destruction of organic pollutants in papermaking wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  • Avisar, D., Horovitz, I., Lozzi, L., Ruggieri, F., Baker, M., Abel, M.-L., et al. (2013). Impact of water quality on removal of carbamazepine in natural waters by N-doped TiO2 photo-catalytic thin film surfaces. Journal of Hazardous Materials, 244-245, 463–471.

    Article  CAS  Google Scholar 

  • Cannon, A. S., Morelli, A., Pressler, W., Warner, J. C., & Guarrera, D. (2005). The low temperature processing of titanium dioxide films by the addition of trimesic acid. Journal of Sol-Gel Science and Technology, 36(2), 157–162.

    Article  CAS  Google Scholar 

  • Chuan, X., Lu, X., & Lu, X. (2008). Photodecomposition of methylene blue by TiO2-mounted diatomite. Journal of Inorganic Materials, 23(4), 657–661.

    Article  CAS  Google Scholar 

  • Da Dalt, S., Alves, A. K., & Bergmann, C. P. (2013). Photocatalytic degradation of methyl orange dye in water solutions in the presence of MWCNT/TiO2 composites. Materials Research Bulletin, 48(5), 1845–1850.

    Article  Google Scholar 

  • Dong, S., Dong, S., Tian, X., Xu, Z., Ma, D., Cui, B., et al. (2016). Role of self-assembly coated Er(3+): YAlO3/TiO2 in intimate coupling of visible-light-responsive photocatalysis and biodegradation reactions. Journal of Hazardous Materials, 302, 386–394.

    Article  CAS  Google Scholar 

  • Fan, D., Guo, S., Wang, H., Li, X., & Wu, Z. (2011). Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach. Eprint Arxiv, 115(27), 13285–13292.

    Google Scholar 

  • Herrmann, H., Martin, S. T., & Hoffmann, M. R. (1995). Time-resolved radio frequency conductivity (TRRFC) studies of charge-carrier dynamics in aqueous semiconductor suspensions. The Journal of Physical Chemistry, 99(45), 16641–16645.

    Article  CAS  Google Scholar 

  • Hou, D., Feng, L., Zhang, J., Dong, S., Zhou, D., & Lim, T. T. (2012). Preparation, characterization and performance of a novel visible light responsive spherical activated carbon-supported and Er3+:YFeO3−doped TiO2 photocatalyst. Journal of Hazardous Materials, 199-200, 301–308.

    Article  CAS  Google Scholar 

  • Huang, G., Teng, M., & Huang, Y. (2010a). Photocatalytic degradation of phenol on titanium dioxide bonded active carbon composite. Journal of Chongqing University of Technology(Natural Science), 24, 27–31.

    CAS  Google Scholar 

  • Huang, Y., Xiao, J., & Su, X. (2010b). Study on photocatalytic degradation of bisphenol A by natural zeolite of TiO2 loaded. Water Purification Technology, 29(2), 36–38.

    CAS  Google Scholar 

  • Huang, W., Shi, Z., & Cheng, H. (2016). Preparation of nanometer TiO2 visible light photocatalyst by solvent-thermal method. Journal of Guangxi University of Science and Technology, 27(3), 89–94.

    Google Scholar 

  • Jiang, Y., Deng, T., Shang, Y., Yang, K., & Wang, H. (2017). Biodegradation of phenol by entrapped cell of Debaryomyces sp. with nano-Fe3O4 under hypersaline conditions. International Biodeterioration & Biodegradation, 123, 37–45.

    Article  CAS  Google Scholar 

  • Kaneco, S., Rahman, M. A., Suzuki, T., Katsumata, H., & Ohta, K. (2004). Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 419–424. https://doi.org/10.1016/j.jphotochem.2004.01.012.

    Article  CAS  Google Scholar 

  • Krishnaiah, D., Anisuzzaman, S. M., Bono, A., & Sarbatly, R. (2013). Adsorption of 2,4,6-trichlorophenol (TCP) onto activated carbon. Journal of King Saud University - Science, 25(3), 251–255.

    Article  Google Scholar 

  • Kruanak, K., & Jarusutthirak, C. (2019). Degradation of 2,4,6-trichlorophenol in synthetic wastewater by catalytic ozonation using alumina supported nickel oxides. Journal of Environmental Chemical Engineering, 7(1), 102825. https://doi.org/10.1016/j.jece.2018.102825.

    Article  CAS  Google Scholar 

  • Liu, Y., Chen, X., Li, J., & Burda, C. (2005). Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere, 61(1), 11–18.

    Article  CAS  Google Scholar 

  • Majlesi, M., Mohseny, S. M., Sardar, M., Golmohammadi, S., & Sheikhmohammadi, A. (2016). Improvement of aqueous nitrate removal by using continuous electrocoagulation/electroflotation unit with vertical monopolar electrodes. Sustainable Environment Research, 26(6), 287–290.

    Article  CAS  Google Scholar 

  • Mohaghegh, N., Tasviri, M., Rahimi, E., & Gholami, M. R. (2015). Comparative studies on Ag3PO4/BiPO4–metal-organic framework–graphene-based nanocomposites for photocatalysis application. Applied Surface Science, 351, 216–224.

    Article  CAS  Google Scholar 

  • Moussavi, G., Khavanin, A., & Alizadeh, R. (2010). The integration of ozonation catalyzed with MgO nanocrystals and the biodegradation for the removal of phenol from saline wastewater. Applied Catalysis B: Environmental, 97(1–2), 160–167.

    Article  CAS  Google Scholar 

  • Ohno, T., & Murakami, N. (2010). Development of visible-light active S cation-doped TiO2 photocatalyst. Current Organic Chemistry, 14(7).

  • Olaniran, A. O., & Igbinosa, E. O. (2011). Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere, 83(10), 1297–1306. https://doi.org/10.1016/j.chemosphere.2011.04.009.

    Article  CAS  Google Scholar 

  • Pan, L., & Jin, Y. (2012). Research advance on removal of organic contaminants in drinking water by TiO2 Photocatalysis. Journal of Environment & Health, 29(3), 284–287.

    CAS  Google Scholar 

  • Pavelescu, G., Uyguner-Demirel, C., Bekbolet, M., Ghervase, L., & Ioja, C. (2014). Comparison of photocatalytic treatment effectiveness on sewage and industrial wastewaters. Environmental Engineering and Management Journal, 13(8), 2015–2021.

    Article  Google Scholar 

  • Pekakis, P. A., Xekoukoulotakis, N. P., & Mantzavinos, D. (2006). Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research, 40(6), 1276–1286.

    Article  CAS  Google Scholar 

  • Rahman, M. Y. A., Umar, A. A., Roza, L., & Salleh, M. M. (2014). Effect of hexamethylenetetramines (HMT) surfactant concentration on the performance of TiO2 nanostructure photoelectrochemical cells. Russian Journal of Electrochemistry, 50(10), 974–980.

  • Saien, J., & Nejati, H. (2007). Enhanced photocatalytic degradation of pollutants in petroleum refinery wastewater under mild conditions. Journal of Hazardous Materials, 148(1–2), 491–495.

    Article  CAS  Google Scholar 

  • Sakthivel, S., & Kisch, H. (2010). Daylight photocatalysis by carbon-modified titanium dioxide. Angewandte Chemie International Edition, 42(40), 4908–4911.

    Article  Google Scholar 

  • Selvam, N. C. S., Jesudoss, S. K., Rajan, P. I., Kennedy, L. J., & Vijaya, J. J. (2015). Comparative investigation on the photocatalytic degradation of 2,4,6-Trichlorophenol using pure and M-doped (M = Ba, Ce, Mg) ZnO spherical nanoparticles. Journal of Nanoscience and Nanotechnology, 15(8), 5910–5917.

    Article  CAS  Google Scholar 

  • Shi, Y., Lv, Y., Ren, H., & Liang, D. (2003). Recent progress in scientific research on persistent organic pollutants(POPs). World Sci-tech R & D, 25(2), 73–78.

    Google Scholar 

  • Sun, J., Qiao, L., Sun, S., & Wang, G. (2008). Photocatalytic degradation of Orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation. Journal of Hazardous Materials, 155(1–2), 312–319.

  • Sun, Z., Yin, Y., & Fan, N. (2014). Preparation and photocatalytic activity of (Fe3+/Gd3+/TiO2)coated SiO2 catalyst. Chinese Journal Of Materials.

  • Tolosana-Moranchel, A., Montejano, A., Casas, J. A., & Bahamonde, A. (2018). Elucidation of the photocatalytic-mechanism of phenolic compounds. Journal of Environmental Chemical Engineering, 6(5), 5712–5719.

    Article  CAS  Google Scholar 

  • Wang, Z., Cai, W., Hong, X., Zhao, X., Xu, F., & Cai, C. (2005). Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Applied Catalysis B: Environmental, 57(3), 223–231.

    Article  CAS  Google Scholar 

  • Wang, Y., He, Y., Lai, Q., & Fan, M. (2014). Review of the progress in preparing nano TiO2: an important environmental engineering material. Journal of Environmental Sciences, 26(11), 2139–2177.

    Article  Google Scholar 

  • Wang, B., Yang, H., Xian, T., Di, L. J., Li, R. S., & Wang, X. X. (2015). Synthesis of spherical Bi2WO6 nanoparticles by a hydrothermal route and their photocatalytic properties. Journal of Nanomaterials, 2015(1), 194.

    Google Scholar 

  • Wang, J., Li, J., Li, H., Duan, S., Meng, S., Fu, X., et al. (2017). Crystal phase-controlled synthesis of BiPO4 and the effect of phase structure on the photocatalytic degradation of gaseous benzene. Chemical Engineering Journal, 330, 433–441.

    Article  CAS  Google Scholar 

  • Wong, C., & Chu, W. (2003). The direct photolysis and photocatalytic degradation of alachlor at different TiO2 and UV sources. Chemosphere, 50(8), 981–987.

    Article  CAS  Google Scholar 

  • Xie, Y., Chen, L., & Liu, R. (2016). Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system. Chemosphere, 155, 217–224.

    Article  CAS  Google Scholar 

  • Yao, B., Jin, Z., Hu, Z., Jin, Q., & Pan, Z. (2011). Biodegradation characteristics of 2, 4, 6-trichlorophenol by photosynthetic bacteria. China Environmental Science, 31(10), 1669–1675.

    CAS  Google Scholar 

  • Yao, S., Nie, S., Zhu, H., Wang, S., Song, X., & Qin, C. (2017). Extraction of hemicellulose by hot water to reduce adsorbable organic halogen formation in chlorine dioxide bleaching of bagasse pulp. Industrial Crops and Products, 96, 178–185.

    Article  CAS  Google Scholar 

  • Yener, Z., & Keles, H. (2010). Enhancement of tributyltin degradation under natural light by N-doped TiO2 photocatalyst. Journal of Hazardous Materials, 184(1), 533–537.

    Google Scholar 

  • Yu, C., Zhou, W., Kai, Y., & Gan, R. (2010). Hydrothermal synthesis of hemisphere-like F-doped anatase TiO2 with visible light photocatalytic activity. Journal of Materials Science, 45(21), 5756–5761.

    Article  CAS  Google Scholar 

  • Yuan, H., & Liu, L. (2016). Removal of Rhodamine B via photocatalysis with Ag3PO4 and coupling with microbial fuel cell. Chinese Journal of Inorganic Chemistry, 32(2), 216–222.

    CAS  Google Scholar 

  • Yuan, C., Cai, N., & Zhao, Y. (2009). Optimization of fabrication process in dye-sensitized solar cells. Journal of Synthetic Crystals, 38(1), 53–59.

    CAS  Google Scholar 

  • Zhao, L., Deng, J., Sun, P., Liu, J., Ji, Y., Nakada, N., et al. (2018). Nanomaterials for treating emerging contaminants in water by adsorption and photocatalysis: systematic review and bibliometric analysis. Science of the Total Environment, 627, 1253–1263. https://doi.org/10.1016/j.scitotenv.2018.02.006.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (NSFC No: 21968005), the National Natural Science Foundation of China (NSFC No: 31860193), Guangxi Science and Technology Base and Special Talents (Grant No. GXSTAD19110156), Guangxi Major Projects of Science and Technology (Grant No.GXMPSTAA17129001), the Opening Project of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control (ZR201702, KF201812-4), Guangxi Major Projects of Science and Technology (Grant No. GXMPSTAA17202032), Guangxi Major Projects of Science and Technology (Grant No. GXMPSTAA18118013), and the National Key R&D Program of China (2018YFD0800700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Xiong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Cheng, H., Liang, Y. et al. Preparation of TiO2/Sponge Composite for Photocatalytic Degradation of 2,4,6-Trichlorophenol. Water Air Soil Pollut 231, 412 (2020). https://doi.org/10.1007/s11270-020-04774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04774-w

Keywords

Navigation