Skip to main content

Advertisement

Log in

Sorption of Bioavailable Arsenic on Clay and Iron Oxides Elevates the Soil Microbial Activity

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

In this study, the effects of As-contaminated groundwater by various minerals in the soil were evaluated. The influence of As on microbial inhibition and activities influenced by soil minerals such as clay minerals (bentonite and kaolinite) and iron oxides (hematite, goethite, and magnetite) were investigated. The method used to evaluate the effects of soil minerals on As-contaminated groundwater was to indirectly measure microbial activity by two methods, measurement of optical density (OD) and fluorescein diacetate (FDA) hydrolysis. This study used Pseudomonas jinjuensis, a microorganism commonly found in soil and groundwater. The measurement of OD is a simple and quick method of identifying the growth of microorganisms, affecting turbidity up to dead cells after dead phase, making it difficult to identify actual living microorganisms; thus, it was inappropriate for toxicity assessment. However, the use of FDA is able to measure the bioavailability of microorganisms due to actual As contamination by the luminescence of the fluorescein caused by the enzymes of living microbes. The bentonite and hematite showed that promoting bacteria activity of 140.5% and 7.9%, respectively, and reducing the negative impact from As to bacteria, constantly, magnetite had a negative impact on bacteria activity. These results indicate that the clay minerals and iron oxides influenced the bioavailability of As in groundwater. Also, surface area and cation exchange capacity (CEC) of clay minerals and iron oxides were important parameters on the bioavailability of As.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam, G., & Duncan, H. (2001). Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biology and Biochemistry, 33, 943–951.

    Article  CAS  Google Scholar 

  • Angle, J. S., McGrath, S. P., & Chaney, R. L. (1991). New culture medium containing ionic concentrations of nutrients similar to concentrations found in the soil solution. Applied and Environmental Microbiology, 57, 3674–3676.

    Article  CAS  Google Scholar 

  • Appelo, C., & Postma, D. (1993). Geochemistry. Groundwater and Pollution, 536.

  • Babich, H., Stotzky, G., & Ehrlich, H. (1980). Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms. CRC Critical Reviews in Microbiology, 8, 99–145.

    Article  CAS  Google Scholar 

  • Behera, S. S., Patra, J. K., Pramanik, K., Panda, N. & Thatoi, H.: 2012, 'Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles'.

    Book  Google Scholar 

  • Campbell, R., & Ephgrave, J. (1983). Effect of bentonite clay on the growth of Gaeumannomyces graminis var. tritici and on its interactions with antagonistic bacteria. Microbiology, 129, 771–777.

    Article  CAS  Google Scholar 

  • Chaerun, S. K., Tazaki, K., Asada, R., & Kogure, K. (2005). Interaction between clay minerals and hydrocarbon-utilizing indigenous microorganisms in high concentrations of heavy oil: Implications for bioremediation. Clay Minerals, 40, 105–114.

    Article  CAS  Google Scholar 

  • Chen, P., Zhang, H.-M., Yao, B.-M., Chen, S.-C., Sun, G.-X., & Zhu, Y.-G. (2020). Bioavailable arsenic and amorphous iron oxides provide reliable predictions for arsenic transfer in soil-wheat system. Journal of Hazardous Materials, 383, 121160.

    Article  CAS  Google Scholar 

  • Choi, J. (2009). Adsorption, bioavailability, and toxicity of cadmium to soil microorganisms. Geomicrobiology Journal, 26, 248–255.

    Article  CAS  Google Scholar 

  • Choi, J., Kwon, D., Yang, J. S., Lee, J. Y., & Park, Y. T. (2009). Comparison of Fe and Mn removal using treatment agents for acid mine drainage. Environmental Technology., 30, 445–454.

    Article  CAS  Google Scholar 

  • Das, S. K., & Das, S. K. (2020). Influence of phosphorus and organic matter on microbial transformation of arsenic. Environmental Technology & Innovation, 19.

  • Dixit, S., & Hering, J. G. (2003). Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37, 4182–4189.

    Article  CAS  Google Scholar 

  • Giménez, J., Martínez, M., de Pablo, J., Rovira, M., & Duro, L. (2007). Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 141, 575–580.

    Article  CAS  Google Scholar 

  • Goldberg, S. (2002). Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Science Society of America Journal, 66, 413–421.

    Article  CAS  Google Scholar 

  • He, Y., Lin, H., Jin, X., Dong, Y., & Luo, M. (2020). Simultaneous reduction of arsenic and cadmium bioavailability in agriculture soil and their accumulation in Brassica chinensis L. by using minerals. Ecotoxicology and Environmental Safety, 198, 110660.

    Article  CAS  Google Scholar 

  • Heijnen, C., Hok-A-Hin, C., & Van Veen, J. (1992). Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biology and Biochemistry, 24, 533–538.

    Article  Google Scholar 

  • Hunt, K. M., Srivastava, R. K., Elmets, C. A., & Athar, M. (2014). The mechanistic basis of arsenicosis: Pathogenesis of skin cancer. Cancer Letters, 354, 211–219.

    Article  CAS  Google Scholar 

  • Joshi, D. N., Patel, J. S., Flora, S. J., & Kalia, K. (2008). Arsenic accumulation by Pseudomonas stutzeri and its response to some thiol chelators. Environmental Health and Preventive Medicine, 13, 257–263.

    Article  CAS  Google Scholar 

  • Kesler, S. E., Simon, A. C., & Simon, A. F. (2015). Mineral resources, economics and the environment. Cambridge University Press.

  • Kumpiene, J., Giagnoni, L., Marschner, B., Denys, S., Mench, M., Adriaensen, K., Vangronsveld, J., Puschenreiter, M., & Renella, G. (2017). Assessment of methods for determining bioavailability of trace elements in soils: A review. Pedosphere, 27, 389–406.

    Article  Google Scholar 

  • Kwon, S. W., Kim, J. S., Park, I. C., Yoon, S. H., Park, D. H., Lim, C. K., & Go, S. J. (2003). Pseudomonas koreensis sp. nov., Pseudomonas umsongensis sp. nov. and Pseudomonas jinjuensis sp. nov., novel species from farm soils in Korea. International Journal of Systematic and Evolutionary Microbiology, 53, 21–27.

    Article  CAS  Google Scholar 

  • Lai, W., Fung, D. Y., Yang, X., Renrong, L., & Xiong, Y. (2009). Development of a colloidal gold strip for rapid detection of ochratoxin A with mimotope peptide. Food Control, 20, 791–795.

    Article  CAS  Google Scholar 

  • Lindgren, P. B. (1997). The role of hrp genes during plant-bacterial interactions. Annual Review of Phytopathology, 35, 129–152.

    Article  CAS  Google Scholar 

  • Lundgren, B. (1981). Fluorescein diacetate as a stain of metabolically active bacteria in soil. Oikos, 17-22.

  • Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Roméo, M. (2009). Arsenic adsorption onto hematite and goethite. Comptes Rendus Chimie, 12, 876–881.

    Article  CAS  Google Scholar 

  • Martin, J., Filip, Z., & Haider, K. (1976). Effect of montmorillonite and humate on growth and metabolic activity of some actinomycetes. Soil Biology and Biochemistry, 8, 409–413.

    Article  CAS  Google Scholar 

  • Mohapatra, D., Mishra, D., Chaudhury, G. R., & Das, R. (2007). Arsenic (V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. Journal of Environmental Science and Health, Part A, 42, 463–469.

    Article  CAS  Google Scholar 

  • Pothier, M. P., Lenoble, V., Garnier, C., Misson, B., Rentmeister, C., & Poulain, A. J. (2020). Dissolved organic matter controls of arsenic bioavailability to bacteria. Science of the Total Environment, 137118.

  • Rajendran, K., Sen, S., Suja, G., Senthil, S. L., & Kumar, T. V. (2017). Evaluation of cytotoxicity of hematite nanoparticles in bacteria and human cell lines. Colloids and Surfaces B: Biointerfaces., 157, 101–109.

    Article  CAS  Google Scholar 

  • Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., & Li, L. (2014). Adsorption of arsenic on modified montmorillonite. Applied Clay Science, 97, 17–23.

    Article  CAS  Google Scholar 

  • Revesz, E., Fortin, D., & Paktunc, D. (2016). Reductive dissolution of arsenical ferrihydrite by bacteria. Applied Geochemistry, 66, 129–139.

    Article  CAS  Google Scholar 

  • Rong, X., Huang, Q., & Chen, W. (2007). Microcalorimetric investigation on the metabolic activity of bacillus thuringiensis as influenced by kaolinite, montmorillonite and goethite. Applied Clay Science, 38, 97–103.

    Article  CAS  Google Scholar 

  • Sarkar, B., Naidu, R., Rahman, M. M., Megharaj, M., & Xi, Y. (2012). Organoclays reduce arsenic bioavailability and bioaccessibility in contaminated soils. Journal of Soils and Sediments, 12, 704–712.

    Article  CAS  Google Scholar 

  • Schumacher, T. E., Eynard, A., & Chintala, R. (2015). Rapid cost-effective analysis of microbial activity in soils using modified fluorescein diacetate method. Environmental Science and Pollution Research, 22, 4759–4762.

    Article  CAS  Google Scholar 

  • Schwertmann, U., & Taylor, R. M. (1989). Iron oxides. Minerals in Soil Environments, 1, 379–438.

    Google Scholar 

  • Shuler, M. L. (1992). Bioprocess enzineering. Prentice-Hall, 412-420.

  • Sparks, D. L. (2003). Environmental soil chemistry. Elsevier.

  • Stotzky, G., & Rem, L. (1966). Influence of clay minerals on microorganisms: I. Montmorillonite and kaolinite on bacteria. Canadian Journal of Microbiology, 12, 547–563.

    Article  CAS  Google Scholar 

  • Stucki, J. W. (1988). Structural iron in smectites (pp. 625–675). Iron in soils and clay minerals: Springer.

    Google Scholar 

  • Stucki, J. W. (1993). Oxidation-reduction mechanisms in iron-bearing phyllosilicates. US Environmental Protection Agency, Environmental Research Laboratory.

  • Stumm, W., & Morgan, J. J. (2012). Aquatic chemistry: Chemical equilibria and rates in natural waters. John Wiley & Sons.

  • Touati, D. (2000). Iron and oxidative stress in bacteria. Archives of Biochemistry and Biophysics, 373, 1–6.

    Article  CAS  Google Scholar 

  • Tran, N., Mir, A., Mallik, D., Sinha, A., Nayar, S., & Webster, T. J. (2010). Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. International Journal of Nanomedicine, 5, 277.

    CAS  Google Scholar 

  • Vasil, M. L., & Ochsner, U. A. (1999). The response of Pseudomonas aeruginosa to iron: Genetics, biochemistry and virulence. Molecular Microbiology, 34, 399–413.

    Article  CAS  Google Scholar 

  • Wang, J. P., Qi, L., Moore, M. R., & Ng, J. C. (2002). A review of animal models for the study of arsenic carcinogenesis. Toxicology Letters, 133, 17–31.

    Article  CAS  Google Scholar 

  • WHO. (2011). Arsenic in Drinking-water (Background document for development of WHO Guidelines for Drinking-water Quality).

  • Wu, H., Chen, W., Rong, X., Cai, P., Dai, K., & Huang, Q. (2014). Soil colloids and minerals modulate metabolic activity of Pseudomonas putida measured using microcalorimetry. Geomicrobiology Journal, 31, 590–596.

    Article  CAS  Google Scholar 

  • Zhang, G., Liu, X., Gao, M., & Song, Z. (2020). Effect of Fe-Mn-Ce modified biochar composite on microbial diversity and properties of arsenic-contaminated paddy soils. Chemosphere, 250, 126249.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through subsurface environmental management project, funded by Korea Ministry of Environment (MOE) (2018002480006) and Korea Institute of Science and Technology (KIST) Institutional Program (Project No. 2E30130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyoung Choi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Ahn, Y., Pandi, K. et al. Sorption of Bioavailable Arsenic on Clay and Iron Oxides Elevates the Soil Microbial Activity. Water Air Soil Pollut 231, 411 (2020). https://doi.org/10.1007/s11270-020-04784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04784-8

Keywords

Navigation