Skip to main content

Advertisement

Log in

Long-Term Changes in Chironomid Assemblages Linked to Lake Liming and Fertilization in Previously Acidified Middle Lake (Sudbury, Canada)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Thousands of lakes in a ~ 17,000 km2 area around Sudbury (Ontario) acidified (pH < 6) and became metal contaminated as a result of local smelting activities that have taken place since the 1880s. Middle Lake, an urban lake located in Sudbury, acidified to pH ~ 4.3, and was subsequently limed and fertilized in the 1970s and 1980s as part of experimental remediation efforts. Little is known about the long-term impacts of acidification, metal contamination, and subsequent remediation efforts on the benthic invertebrate communities in Middle Lake. Thus, we used paleolimnological methods to examine long-term trends in Chironomidae and Chaoboridae (Diptera) assemblages. Three important chironomid assemblage zones were identified, corresponding to pre-smelting/mining (i.e. reference) conditions, acidification/metal contamination, and subsequent remediation efforts. Acidification led to the increased abundance of acid-tolerant chironomid taxa such as Psectrocladius and Zalutschia, as well as the dominance of Chaoborus americanus indicating the loss of the fish community in the lake between ~ 1920 and ~ 1990. Liming, fertilization, and fish stocking abruptly shifted the chironomid assemblages from Chironomus- to Sergentia-dominated, likely through alterations to habitat quality, food availability, and predation pressure. Fish stocking efforts were clearly visible in the record by the loss of Chaoborus americanus. Following mitigation efforts, chironomid assemblages did not return to their pre-impact state; however, they remained relatively stable after ~ 1990. The recorded shifts in taxonomic composition provide insights into the impacts of smelting operations and remediation efforts on benthic invertebrates, which is important in future lake management and in the future inference of environmental conditions using chironomids in multiple-stressor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Appleby, P. G. (2001). Chronostratigraphic techniques in recent sediments. In W. M. Last & J. P. Smol (Eds.), Tracking environmental change using lake sediments (vol. 1). Basin analysis, coring, and chronological techniques (pp. 171–203). Dordrecht: Springer.

    Google Scholar 

  • Bennett, K. D. (1996). Determination of the number of zones in a biostratigraphical sequence. New Phycologist, 132, 155–170.

    Google Scholar 

  • Brodersen, K. P., & Quinlan, R. (2006). Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews, 25, 1995–2012.

    Google Scholar 

  • Brodin, Y. W., & Gransberg, M. (1993). Responses of insects, especially Chironomidae (Diptera), and mites to 130 years of acidification in a Scottish lake. Hydrobiologia, 250(3), 201–212.

    Google Scholar 

  • Brooks, S. J., Udachin, V., & Williamson, B. J. (2005). Impact of copper smelting on lakes in the southern Ural Mountains, Russia, inferred from chironomids. Journal of Paleolimnology, 33, 229–241.

    Google Scholar 

  • Brooks, S. J., Langdon, P. G., & Heiri, O. (2007). The identification and use of Paleoarctic Chironomidae larvae in palaeoecology. Technical Guide No. 10, Quaternary Research Association, London. 276pp.

  • Clerk, S., Hall, R., Quinlan, R., & Smol, J. P. (2000). Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. Journal of Paleolimnology, 23, 319–336.

    Google Scholar 

  • Corston, A., Gillespie, M., & Gunn, J. (2014). Middle Lake: urban lakes fisheries study 2014. Accessed on 31 Mar 2020 from https://www3.laurentian.ca/livingwithlakes/wp-content/uploads/2017/02/Middle-Lake-Urban-Lakes-Fisheries-Study-2014.pdf.

  • Davis, R. B., Anderson, D. S., & Berge, F. (1985). Palaeolimnological evidence that lake acidification is accompanied by loss of organic matter. Nature, 316, 436–438.

    CAS  Google Scholar 

  • de Bisthoven, L. J., Gerhardt, A., & Soares, A. M. V. M. (2004). Effects of acid mine drainage on larval Chironomus (Diptera, Chironomidae) measured with the multispecies Freshwater Biomonitor®. Environmental Toxicology and Chemistry, 23, 1123–1128.

    Google Scholar 

  • de Bisthoven, L. J., Gerhardt, A., & Soares, A. M. V. M. (2005). Chironomidae larvae as bioindicators of an acid main drainage in Portugal. Hydrobiologia, 532, 181–191.

    Google Scholar 

  • Dermott, R., Kelso, J. R. M., & Douglas, A. (1986). The benthic fauna of 41 acid sensitive headwater lakes in north central Ontario. Water, Air, and Soil Pollution, 28, 283–292.

    Google Scholar 

  • Di Veroli, A., Santoro, F., Pallottini, M., Selvaggi, R., Scardazza, F., Cappelletti, D., & Goretti, E. (2014). Deformities of chironomid larvae and heavy metal pollution: from laboratory to field studies. Chemosphere, 112, 9–17.

    Google Scholar 

  • Dixit, S. S., Dixit, A. S., & Smol, J. P. (1990). Paleolimnological investigation of three manipulated lakes from Sudbury, Canada. Hydrobiologia, 214(1), 245–252.

    Google Scholar 

  • Futter, M. N. (2003). Patterns and trends in southern Ontario lake ice phenology. Environmental Monitoring and Assessment, 88, 431–444.

    Google Scholar 

  • Girard, R., Yan, N. D., Heneberry, J., & Keller, W. (2003). Physical and chemical data series from Clearwater, Lohi, Middle and Hannah lakes near Sudbury Ontario: long term responses to liming and natural recovery from historical acidification and metal contamination. Ontario Ministry of Environment report #5429e.

  • Glew, J. R. (1988). A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology, 1, 235–239.

    Google Scholar 

  • Glew, J. R. (1989). A new trigger mechanism for sediment samplers. Journal of Paleolimnology, 2, 241–243.

    Google Scholar 

  • Goyke, A. P., & Hershey, A. E. (1992). Effects of fish predation on larval chironomid (Diptera: Chironomidae) communities in an arctic ecosystem. Hydrobiologia, 240, 203–211.

    Google Scholar 

  • Griffiths, R. W., & Keller, W. (1992). Benthic macroinvertebrate changes in lakes near Sudbury, Ontario, following a reduction in acid emissions. Canadian Journal of Fisheries and Aquatic Sciences, 49(Suppl. 1), 1992.

    Google Scholar 

  • Grimm, E. C. (1987). CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by method of incremental sum of squares. Computers and Geoscience, 13, 13–35.

    Google Scholar 

  • Groenendijk, D., Zeinstra, L. W. M., & Postma, J. F. (1998). Fluctuating asymmetry and mentum gaps in populations of the midge Chironomus riparius (Diptera: Chironomidae) from a metal-contaminated river. Environmental Toxicology and Chemistry, 17(10), 1999–2005.

    CAS  Google Scholar 

  • Gunderson, L. H. (2000). Ecological resilience—in theory and application. Annual Review of Ecology, Evolution, and Systematics, 31, 425–439.

    Google Scholar 

  • Gunn, J. M., Keller, W., Negusanti, J. J., Potvin, R. R., Beckett, P., & Winterhalder, K. (1995). Ecosystem recovery after emission reductions: Sudbury, Canada. Water, Air, & Soil Pollution, 85, 1783–1788.

    CAS  Google Scholar 

  • Halvorsen, G.A., Heneberry, J.H., & Snucins, E. (2001). Sublittoral chironomids as indicators of acidity (Diptera: Chironomidae). Water, Air, & Soil Pollution, 130, 1385–1390

  • Havas, M., & Likens, G. E. (2009). Toxicity of aluminum and hydrogen ions to Daphnia catawba, Holopedium gibberum, Chaoborus punctipennis, and Chironomus anthracinus from Mirror Lake, New Hampshire. Canadian Journal of Zoology, 63(5), 1114–1119.

    Google Scholar 

  • Henrikson, L., Olofsson, J. B., & Oscarson, H. G. (1982). The impact of acidification on Chironomidae (Diptera) as indicated by subfossil stratification. Hydrobiologia, 86(3), 223–229.

    Google Scholar 

  • Hildrew, A. G., Townsend, C. R., Francis, J., & Finch, K. (1984). Cellulolytic decomposition in streams of contrasting pH and its relationship with invertebrate community structure. Freshwater Biology, 14, 323–328.

    Google Scholar 

  • Hultberg, H., & Andersson, I. B. (1982). Liming of acidified lakes: induced long-term changes. Water, Air, and Soil Pollution, 18, 311–331.

    CAS  Google Scholar 

  • Il’yashuk, B., Il’yashuk, E., & Dauvalter, V. (2003). Chironomid responses to long-term metal contamination: a paleolimnological study in two bays of Lake Imandra, Kola Peninsula, northern Russia. Journal of Paleolimnology, 30(2), 217–230.

    Google Scholar 

  • Johnson, M. G., Kelso, J. R. M., McNeil, O. C., & Morton, W. B. (1990). Fossil midge associates and the historical status of fish in acidified lakes. Journal of Paleolimnology, 3, 113–127.

    Google Scholar 

  • Juggins, S. (2019). Rioja: analysis of Quaternary science data. R package version 0.9–21. https://cran.r-project.org/web/packages/rioja/index.html.

  • Kahle, D., & Wickham, H. (2019). ggmap: spatial visualization with ggplot2. R package version 3.0.0. http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.

  • Keller, W. (2009). Limnology in northeastern Ontario: from acidification to multiple stressors. Canadian Journal of Fisheries and Aquatic Sciences, 66, 1189–1198.

    CAS  Google Scholar 

  • Keller, W., & Pitblado, J. R. (1986). Water quality changes in Sudbury area lakes: a comparison of synoptic surveys in 1974-1976 and 1981-1983. Water, Air, & Soil Pollution, 29, 285–296.

    CAS  Google Scholar 

  • Keller, W., Gunn, J. M., & Yan, N. D. (1992). Evidence of biological recovery in acid-stressed lakes near Sudbury, Canada. Environmental Pollution, 78, 79–85.

    CAS  Google Scholar 

  • Keller, W., Heneberry, J., & Leduc, J. (2005). Linkages between weather, dissolved organic carbon, and cold-water habitat in a Boreal Shield lake recovering from acidification. Canadian Journal of Fisheries and Aquatic Sciences, 62, 341–347.

    CAS  Google Scholar 

  • Keller, W., Yan, N. D., Gunn, J. M., & Heneberry, J. (2007). Recovery of acidified lakes: Lessons from Sudbury, Ontario, Canada. In Acid Rain - Deposition to Recovery (pp. 317–322). Springer, Dordrecht.

  • Keller, W., Heneberry, J., & Edwards, B. A. (2019). Recovery of acidified Sudbury, Ontario, Canada, lakes: a multi-decade synthesis and update. Environmental Reviews, 27, 1–16.

    Google Scholar 

  • Korosi, J. B., Paterson, A. M., DeSellas, A. M., & Smol, J. P. (2008). Linking mean body size of pelagic Cladocera to environmental variables in Precambrian Shield lakes: a paleolimnological approach. Journal of Limnology, 67, 22–34.

    Google Scholar 

  • Korosi, J. B., Thienpont, J. R., Smol, J. P., & Blais, J. M. (2017a). Paleo-ecotoxicology: what can lake sediments tell us about ecosystem responses to environmental pollutants? Environmental Science & Technology, 51, 9446–9457.

    CAS  Google Scholar 

  • Korosi, J. B., Thienpont, J. R., Smol, J. P., & Blais, J. M. (2017b). Paleolimnology can provide the missing long-term perspective in ecotoxicology research. Integrated Environmental Assessment and Management, 13, 957–959.

    Google Scholar 

  • Kurek, J., Lawlor, L., Cumming, B. F., & Smol, J. P. (2012). Long-term oxygen conditions assessed using chironomid assemblages in brook trout lakes from Nova Scotia, Canada. Lake and Reservoir Management, 28(3), 177–188.

  • Labaj, A. L., Jeziorski, A., Kurek, J., & Smol, J. P. (2014). Long-term trends in cladoceran assemblages related to acidification and subsequent liming of Middle Lake (Sudbury, Canada). Water, Air, & Soil Pollution, 225(3), 1868.

    Google Scholar 

  • Labaj, A. L., Kurek, J., Jeziorski, A., & Smol, J. P. (2015). Elevated metal concentrations inhibit biological recovery of Cladocera in previously acidified boreal lakes. Freshwater Biology, 60, 347–359.

    CAS  Google Scholar 

  • Laroque, I., Hall, R. I., & Grahn, E. (2001). Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). Journal of Paleolimnology, 26, 307–322.

    Google Scholar 

  • Leary, R. F., & Allendorf, F. W. (1989). Fluctuating asymmetry as an indicator of stress: Implications for conservation biology. Trends in Ecology and Evolution, 4(7), 214–217.

    CAS  Google Scholar 

  • Ledger, M. E., & Hildrew, A. G. (2005). The ecology of acidification and recovery: changes in herbivore-algal food web linkages across a stream pH gradient. Environmental Pollution, 137, 103–118.

    CAS  Google Scholar 

  • Meyer-Jacob, C., Michelutti, N., Paterson, A. M., Cumming, B. F., Keller, W., & Smol, J. P. (2019). The browning and re-browning of lakes: divergent lake-water organic carbon trends linked to acid deposition and climate change. Scientific Reports, 9, 16676.

    Google Scholar 

  • Meyer-Jacob, C., Labaj, A. L., Paterson, A. M., Edwards, B. A., Keller, W., Cumming, B. F., & Smol, J. P. (2020). Re-browning of Sudbury (Ontario, Canada) lakes now approaches pre-acid deposition lake-water dissolved organic carbon levels. Science of the Total Environment 725, 138347. https://doi.org/10.1016/j.scitotenv.2020.138347.

  • Monteith, D. T., Stoddar, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Høgåsen, T., Wilander, A., Skjelkvåle, B. L., Jeffries, D. S., Vuorenmaa, J., Killer, B., Kopácek, J., & Vesely, J. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–540.

    CAS  Google Scholar 

  • Mousavi, S. K. (2002). Boreal chironomid communities and their relations to environmental factors—the impact of lake depth, size and acidity. Boreal Environment Research, 7(1), 63–75.

    CAS  Google Scholar 

  • Mousavi, S. K., Primicerio, R., & Amundsen, P. A. (2003). Diversity and structure of Chironomidae (Diptera) communities along a gradient of heavy metal contamination in a subarctic watercourse. Science of the Total Environment, 307(1–3), 93–110.

    Google Scholar 

  • Neary, B.P., Dillon, P.J., Munro, J.R., & Clark, B. (1990). The acidification of Ontario lakes: an assessment of their sensitivity with respect to biological damage. Ontario Ministry of the Environment, Dorset, Ontario, Technical Report. 170 p.

  • Oksanen, J., Blanchet, F. G., Friendly, M., Roeland, K., Legendre, P., O’Hara, et al. (2017). Vegan: community ecology package. R package version 2.4–2. http://CRAN.R-project.org/package=vegan.

  • Palmer, M. E., Keller, W., & Yan, N. D. (2013). Gauging recovery of zooplankton from historical acid and metal contamination: the influence of temporal changes in restoration targets. Journal of Applied Ecology, 50, 107–118.

    CAS  Google Scholar 

  • Porinchu, D., Rolland, N., & Moser, K. (2009). Development of a chironomid-based air temperature inference model for the central Canadian Arctic. Journal of Paleolimnology, 41, 349–368.

    Google Scholar 

  • Poulin, D. J., Gunn, J. M., Sein, R., & Laws, K. M. (1991). Fish species present in Sudbury lakes: results of the 1989–1991 urban lakes surveys. Cooperative Freshwater Ecology Unit, Laurentian University: Sudbury.

    Google Scholar 

  • Quinlan, R., & Smol, J. P. (2001a). Chironomid-based inference models for estimating end-of-summer hypolimnetic oxygen from south-central Ontario shield lakes. Freshwater Biology, 46, 1529–1551.

    CAS  Google Scholar 

  • Quinlan, R., & Smol, J. P. (2001b). Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology, 26, 327–342.

    Google Scholar 

  • R Core Team. (2019). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/.

  • Raddum, G. G., Brettum, P., Matzow, D., Nilssen, J. P., Skov, A., Sveälv, T., et al. (1986). Liming the acid Lake Hovvatn, Norway: a whole-ecosystem study. Water, Air, & Soil Pollution, 31, 721–763.

    CAS  Google Scholar 

  • Roosa, S., Pyrgei, E., Lesven, L., Wattiez, R., Gillan, D., Gerrari, B. J. D., Criquet, J., & Billon, G. (2016). On the bioavailability of trace metals in surface sediments: a combined geochemical and biological approach. Environmental Science and Pollution Research, 23, 10679–10692.

    CAS  Google Scholar 

  • Salmoiraghi, G., Gumiero, B., Pasteris, A., Prato, S., Bonacina, C., & Bonomi, G. (2001). Breakdown rates and macroinvertebrate colonisation of alder (Alnus glutinosa) leaves in an acid lake (Lake Orta, N Italy), before, during, and after a liming intervention. Journal of Limnology, 60(1), 127–133.

    Google Scholar 

  • Scheider, W. A., Cave, B., & Jones, J. (1976). Reclamation of acidified lakes near Sudbury, Ontario by neutralization and fertilization. Ontario Ministry of the Environment, Limnology and Toxicity Section. 63 pp.

  • Schelske, C. L., Peplow, A., Brenner, M., & Spencer, C. N. (1994). Low-background counting: applications for 210Pb dating of sediments. Journal of Paleolimnology, 10, 115–128.

    Google Scholar 

  • Shortelle, A. B., & Colburn, E. A. (1987). Ecological effects of liming in a Cape Cod kettle pond: a note for fisheries managers. Lake and Reservoir Management, 3, 436–443.

    Google Scholar 

  • Smol, J. P. (2008). Pollution of lakes and rivers: a paleoenvironmental perspective (2nd ed.). Oxford: Blackwell Publishing.

    Google Scholar 

  • Smol, J. P. (2010). The power of the past: using sediments to track the effects of multiple stressors on lake ecosystems. Freshwater Biology, 55,(Suppl. 1) 43–59.

  • Smol, J. P. (2019). Under the radar: long-term perspectives on ecological changes in lakes. Proceedings of the Royal Society B, 286, 20190834. https://doi.org/10.1098/rspb.2019.0834.

    Article  CAS  Google Scholar 

  • Snetsinger, R. (1993). Historic metal contamination of Sudbury area lake sediments. MSc thesis, Queen’s University, Kingston, Ontario, Canada.

  • Snucins, E., & Gunn, J. (2003). Use of rehabilitation experiments to understand the recovery dynamics of acid-stressed fish populations. Ambio 32, 240–243.

  • Swansburg, E. O., Fairchild, W. L., Fryer, B. J., & Ciborowski, J. J. H. (2002). Mouthpart deformities and community composition of Chironomidae (Diptera) larvae downstream of metal mines in New Brunswick, Canada. Environmental Toxicology and Chemistry, 21(12), 2675–2684.

    CAS  Google Scholar 

  • Sweetman, J. N., & Smol, J. P. (2006). Reconstructing fish populations using Chaoborus (Diptera: Chaoboridae) remains—a review. Quaternary Science Reviews, 25, 2013–2023.

    Google Scholar 

  • Uutala, A. J. (1990). Chaoborus (Diptera: Chaoboridae) mandibles—paleolimnological indicators of the historical status of fish populations in acid-sensitive lakes. Journal of Paleolimnology, 4, 139–151.

    Google Scholar 

  • Uutala, A. J., & Smol, J. P. (1996). Paleolimnological reconstructions of long-term changes in fisheries status in Sudbury area lakes. Canadian Journal of Fisheries and Aquatic Sciences, 53(1), 174–180.

    Google Scholar 

  • Walker, I. R. (2001). Midges: Chironomidae and related Diptera. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 4. Dordrecht: Springer.

    Google Scholar 

  • Walker, I. R., Smol, J. P., Engstrom, D. R., & Birks, H. J. B. (1991). An assessment of Chironomidae as quantitative indicators of past climatic change. Canadian Journal of Fisheries and Aquatic Sciences, 48, 975–987.

    Google Scholar 

  • Wallace, J. B., & Merritt, R. W. (1980). Filter feeding ecology of aquatic insects. Annual Reviews in Entomology, 25, 103–132.

    Google Scholar 

  • Yan, N. D., & Lafrance, C. (1984). Response of acidic and neutralized lakes near Sudbury, Ontario, to nutrient enrichment. In J. Nriagu (Ed.), Advances in environmental sciences series (pp. 457–521). Hoboken: John Wiley and Sons.

    Google Scholar 

  • Yan, N. D., Keller, W., Somers, K. M., Pawson, T. W., & Girard, R. E. (1996). Recovery of crustacean zooplankton communities from acid and metal contamination: comparing manipulated and reference lakes. Canadian Journal of Fisheries and Aquatic Sciences, 53(6), 1301–1327.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Joshua Thienpont for his assistance in the field and Edwin Morelli for assistance with the original chlorophyll-a analysis. We would also like to thank Dr. Andrew M. Paterson for his feedback and suggestions that improved the manuscript. Finally, we would like to thank the two anonymous reviewers for their feedback, which improved the manuscript.

Funding

This work was funded by a Natural Science and Research Council of Canada (NSERC) grant to JPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Simmatis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegler, S., Simmatis, B., Labaj, A.L. et al. Long-Term Changes in Chironomid Assemblages Linked to Lake Liming and Fertilization in Previously Acidified Middle Lake (Sudbury, Canada). Water Air Soil Pollut 231, 410 (2020). https://doi.org/10.1007/s11270-020-04780-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04780-y

Keywords

Navigation