Skip to main content
Log in

LinSSS: linear decomposition of heterogeneous subsurface scattering for real-time screen-space rendering

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Screen-space subsurface scattering is currently the most common approach to represent translucent materials in real-time rendering. However, most of the current approaches approximate the diffuse reflectance profile of translucent materials as a symmetric function, whereas the profile has an asymmetric shape in nature. To address this problem, we propose LinSSS, a numerical representation of heterogeneous subsurface scattering for real-time screen-space rendering. Although our representation is built upon a previous method, it makes two contributions. First, LinSSS formulates the diffuse reflectance profile as a linear combination of radially symmetric Gaussian functions. Nevertheless, it can also represent the spatial variation and the radial asymmetry of the profile. Second, since LinSSS is formulated using only the Gaussian functions, the convolution of the diffuse reflectance profile can be efficiently calculated in screen space. To further improve the efficiency, we deform the rendering equation obtained using LinSSS by factoring common convolution terms and approximate the convolution processes using a MIP map. Consequently, our method works as fast as the state-of-the-art method, while our method successfully represents the heterogeneity of scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Arbree, A., Walter, B., Bala, K.: Heterogeneous subsurface scattering using the finite element method. IEEE Trans. Vis. Comput. Graph. 17(7), 956–969 (2011). https://doi.org/10.1109/TVCG.2010.117

    Article  Google Scholar 

  2. Chandrasekhar, S.: Radiative Transfer. Oxford University Press, Oxford (1960)

    MATH  Google Scholar 

  3. Chen, G., Peers, P., Zhang, J., Tong, X.: Real-time rendering of deformable heterogeneous translucent objects using multiresolution splatting. Vis. Comput. 28(6), 701–711 (2012). https://doi.org/10.1007/s00371-012-0704-1

    Article  Google Scholar 

  4. Dachsbacher, C., Stamminger, M.: Translucent shadow maps. In: Proceedings of the Eurographics Workshop on Rendering, pp. 197–201 (2003). https://doi.org/10.2312/EGWR/EGWR03/197-201

  5. Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: Proceedings of the Symposium on Interactive 3D Graphics and Games, pp. 203–231 (2005). https://doi.org/10.1145/1053427.1053460

  6. d’Eon, E., Irving, G.: A quantized-diffusion model for rendering translucent materials. ACM Trans. Graph. 30(4), 56 (2011). https://doi.org/10.1145/2010324.1964951

    Article  Google Scholar 

  7. d’Eon, E., Luebke, D., Enderton, E.: Efficient rendering of human skin. In: Proceedings of the Eurographics Conference on Rendering Techniques, pp. 147–157 (2007). https://doi.org/10.2312/EGWR/EGSR07/147-157

  8. Donner, C., Jensen, H.W.: Light diffusion in multi-layered translucent materials. ACM Trans. Graph. 24(3), 1032–1039 (2005). https://doi.org/10.1145/1073204.1073308

    Article  Google Scholar 

  9. Donner, C., Jensen, H.W.: Rendering translucent materials using photon diffusion. In: Proceedings of Eurographics Symposium on Rendering Techniques (EGSR), pp. 243–251 (2007)

  10. Donner, C., Weyrich, T., d’Eon, E., Ramamoorthi, R., Rusinkiewicz, S.: A layered, heterogeneous reflectance model for acquiring and rendering human skin. ACM Trans. Graph. 27(5), 140:1–140:12 (2008). https://doi.org/10.1145/1409060.1409093

    Article  Google Scholar 

  11. Elek, O., Krivánek, J.: Towards a principled kernel prediction for spatially varying BSSRDFs. In: Proceedings of the Eurographics Workshop on Material Appearance Modeling (2018). https://doi.org/10.2312/mam.20181200

  12. Elek, O., Ritschel, T., Seidel, H.: Real-time screen-space scattering in homogeneous environments. IEEE Comput. Graph. Appl. 33(3), 53–65 (2013). https://doi.org/10.1109/MCG.2013.17

    Article  Google Scholar 

  13. Elek, O., Sumin, D., Zhang, R., Weyrich, T., Myszkowski, K., Bickel, B., Wilkie, A., Křivánek, J.: Scattering-aware texture reproduction for 3d printing. ACM Trans. Graph. 36(6), 241:1–241:15 (2017). https://doi.org/10.1145/3130800.3130890

    Article  Google Scholar 

  14. Frederickx, R., Dutré, P.: A forward scattering dipole model from a functional integral approximation. ACM Trans. Graph. 36(4), 109:1–109:13 (2017). https://doi.org/10.1145/3072959.3073681

    Article  Google Scholar 

  15. Frisvad, J.R., Hachisuka, T., Kjeldsen, T.K.: Directional dipole model for subsurface scattering. ACM Trans. Graph. (2015). https://doi.org/10.1145/2682629

    Article  MATH  Google Scholar 

  16. Goesele, M., Lensch, H.P.A., Lang, J., Fuchs, C., Seidel, H.P.: Disco: acquisition of translucent objects. ACM Trans. Graph. 23(3), 835–844 (2004). https://doi.org/10.1145/1186562.1015807

    Article  Google Scholar 

  17. Habel, R., Christensen, P.H., Jarosz, W.: Photon beam diffusion: a hybrid Monte Carlo method for subsurface scattering. In: Proceedings of the Eurographics Symposium on Rendering (EGSR), pp. 27–37 (2013). https://doi.org/10.1111/cgf.12148

  18. Hable, J., Borshukov, G., Hejl, J.: Fast skin shading. Shader X7, 161–173 (2009)

    Google Scholar 

  19. Hanrahan, P., Krueger, W.: Reflection from layered surfaces due to subsurface scattering. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’93), pp. 165–174 (1993). https://doi.org/10.1145/166117.166139

  20. High-resolution light probe image gallery. https://vgl.ict.usc.edu/Data/HighResProbes/. Accessed 22 July 2020

  21. Jakob, W.: Mitsuba renderer (2010). http://www.mitsuba-renderer.org. Accessed 22 July 2020

  22. Jensen, H.W., Buhler, J.: A rapid hierarchical rendering technique for translucent materials. ACM Trans. Graph. 21(3), 576–581 (2002). https://doi.org/10.1145/566654.566619

    Article  Google Scholar 

  23. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01), pp. 511–518 (2001). https://doi.org/10.1145/383259.383319

  24. Jimenez, J., Gutierrez, D.: Faster rendering of human skin. In: Proceedings of Spanish Computer Graphics Conference (CEIG) (2008)

  25. Jimenez, J., Gutierrez, D.: Screen-space subsurface scattering. In: GPU Pro: Advanced Rendering Techniques, pp. 335–351 (2010). https://doi.org/10.1201/b10648-26

  26. Jimenez, J., Zsolnai, K., Jarabo, A., Freude, C., Auzinger, T., Wu, X.C., der Pahlen, J., Wimmer, M., Gutierrez, D.: Separable subsurface scattering. Comput. Graph. Forum 34(6), 188–197 (2015). https://doi.org/10.1111/cgf.12529

    Article  Google Scholar 

  27. Lee, S., Kim, G.J., Choi, S.: Real-time depth-of-field rendering using anisotropically filtered mipmap interpolation. IEEE Trans. Vis. Comput. Graph. 15(3), 453–464 (2009). https://doi.org/10.1109/TVCG.2008.106

    Article  Google Scholar 

  28. Lensch, H.P., Goesele, M., Bekaert, P., Kautz, J., Magnor, M.A., Lang, J., Seidel, H.P.: Interactive rendering of translucent objects. Comput. Graph. Forum 22(2), 195–205 (2003). https://doi.org/10.1111/1467-8659.00660

    Article  Google Scholar 

  29. Mertens, T., Kautz, J., Bekaert, P., Seidelz, H.P., Van Reeth, F.: Interactive rendering of translucent deformable objects. In: Proceedings of the Eurographics Workshop on Rendering, pp. 130–140 (2003). https://doi.org/10.2312/EGWR/EGWR03/130-140

  30. Mertens, T., Kautz, J., Bekaert, P., Van Reeth, F., Seidel, H.P.: Efficient rendering of local subsurface scattering. Comput. Graph. Forum 24(1), 41–49 (2005). https://doi.org/10.1111/j.1467-8659.2005.00827.x

    Article  Google Scholar 

  31. Munoz, A., Echevarria, J.I., Seron, F.J., Lopez-Moreno, J., Glencross, M., Gutierrez, D.: Bssrdf estimation from single images. Comput. Graph. Forum 30(2), 455–464 (2011). https://doi.org/10.1111/j.1467-8659.2011.01873.x

    Article  Google Scholar 

  32. Nocedal, J., Wright, S.J.: Numerical Optimization of Computer Models, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  33. Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. ACM Trans. Graph. 25(3), 746–753 (2006). https://doi.org/10.1145/1179352.1141950

    Article  Google Scholar 

  34. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’01), pp. 497–500 (2001). https://doi.org/10.1145/383259.383317

  35. Shah, M.A., Konttinen, J., Pattanaik, S.: Image-space subsurface scattering for interactive rendering of deformable translucent objects. IEEE Comput. Graph. Appl. 29(1), 66–78 (2009). https://doi.org/10.1109/MCG.2009.11

    Article  Google Scholar 

  36. Sone, H., Hachisuka, T., Koike, T.: Parameter estimation of BSSRDF for heterogeneous materials. Eurograph. Short Pap. (2017). https://doi.org/10.2312/egsh.20171018

    Article  Google Scholar 

  37. Song, Y., Tong, X., Pellacini, F., Peers, P.: Subedit: a representation for editing measured heterogeneous subsurface scattering. ACM Trans. Graph. 28(3), 31:1–31:10 (2009). https://doi.org/10.1145/1576246.1531337

    Article  Google Scholar 

  38. Song, Y., Wang, W.: A data-driven model for anisotropic heterogeneous subsurface scattering. In: Proceedings of the Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, pp. 1–7 (2013). https://doi.org/10.1109/APSIPA.2013.6694333

  39. Stam, J.: Multiple scattering as a diffusion process. In: Rendering Techniques, pp. 41–50 (1995). https://doi.org/10.1007/978-3-7091-9430-0_5

  40. Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., Shum, H.Y.: Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27(1), 9:1–9:18 (2008). https://doi.org/10.1145/1330511.1330520

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the anonymous reviewers for their helpful comments to significantly improve the quality of the paper. We thank Pietre Peers, Xin Tong, and Yue Dong for providing us their measured BSSRDF data. We also thank Hiroyuki Kubo, Takahito Aoto, and Hubert P. H. Shum for their constructive discussion on this study.

Funding

This project was jointly supported by JSPS KAKENHI (JP18K18075, JP20H04203, JP17H06101, and JP19H01129), JST ACCEL (JPMJAC1602), JST Mirai Project (JPMJMI19B2), and a Grant-in-Aid from the Waseda Institute of Advanced Science and Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Yatagawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2109 KB)

Supplementary material 2 (mp4 42496 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yatagawa, T., Yamaguchi, Y. & Morishima, S. LinSSS: linear decomposition of heterogeneous subsurface scattering for real-time screen-space rendering. Vis Comput 36, 1979–1992 (2020). https://doi.org/10.1007/s00371-020-01915-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01915-4

Keywords

Navigation