Skip to main content
Log in

Yang–Mills-like field theories built on division quaternion and octonion algebras

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Yang–Mills-like field theories are developed using both division quaternion and octonion algebras. Quaternionic field theory is the same as the Yang–Mills gauge theory. The octonionic field theory is an expansion from a similar field theory built with split octonions algebra that uses a complex-form basis as proposed by Gunaydin and Gursey (J Math Phys 14:1651, 1973), now with division octonions. This proposed octonionic field theory is the last possible field theory built using the division algebra of octonions, as permitted by the Hurwitz theorem. The interpretation of this “octonionic field” is not straightforward, except that it is similar to the quaternionic Yang–Mills field. A possible interpretation for this octonionic field theory for spin-1/2 particles is proposed in terms of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The terminology of unarions and binarions was proposed by MacCrimmon in  [29].

  2. Here, it is used the same symbol \({{\mathcal {U}}}\) as in the double quaternions, as it was not possible to make \({{\mathcal {U}}}\) bold-face in LaTex.

References

  1. M. Geoffrey, Dixon, Division Algebras: Octonions, Quaternions, Complex Numbers, and the Algebraic Design of Physics (Springer, Berlin, 1994)

    MATH  Google Scholar 

  2. John C. Baez, The Octonions, Bull. Am. Math. Soc. 39, 145–205 (2002)

    Article  Google Scholar 

  3. John Horton Conway, On Quaternions and Octonions (A.K. Peters/CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  4. Tevian Dray, Corine A. Manogue, The Geometry of Octonions (World Scientific Pub, Chennai, 2015)

    Book  Google Scholar 

  5. Carlos Castro Perelman, Adv. Appl. Clifford Algebr. 29, 22 (2019)

    Article  Google Scholar 

  6. B.C. Chanyal, P.S. Bisht, O.P.S. Negi, Int. J. Theor. Phys. 49, 1333 (2010)

    Article  Google Scholar 

  7. B.C. Chanyal, P.S. Bisht, T. Li, O.P.S. Negi, Int. J. Theor. Phys. 51, 3410 (2012)

    Article  Google Scholar 

  8. M. Gogberashvili, J. Phys. A Math. Gen. 39, 7099 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Dagwal, P.S. Bisht, O.P.S. Negi, arXiv:hep-th/0608061v1 (2006)

  10. S. De Leo, K. Abdel-Khalek, Prog. Theor. Phys. 96, 833 (1996)

    Article  ADS  Google Scholar 

  11. Z. Kuznetsova, F. Toppan, arXiv:hep-th/0610122v1 (2006)

  12. S. Marques, C.G. Oliveira, J. Math. Phys. 26, 3131 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Marques, C.G. Oliveira, Phys. Rev. D 36, 1716 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  14. J.W. Maluf, S. Okubo, Phys. Rev. D 31, 1327 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  15. S. Marques-Bonham, The Dirac equation in a non-Riemannian manifold. III: an analysis using the algebra of quaternions and octonions. J. Math. Phys. 31, 1478 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Borchsenius, Phys. Rev. D 19, 2707 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Gunaydin, F. Gursey, J. Math. Phys. 14, 1651 (1973)

    Article  ADS  Google Scholar 

  18. S. Marques-Bonham, R. Matzner, L.J. Boya, A Maxwell-Like Double-Field Theory Using Quaternions (2014). This paper is available at the website: www.utexas.academia.edu/SirleyMarquesBonhamPhD

  19. S. Marques-Bonham, J. Math. Phys. 29, 2127 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  20. A more complete mathematical definition of quadratic forms can be found in T.Y. Lam, The Algebraic Theory of Quadratic Forms, Addison-Wesley, 1980. See also Peter Ott’s paper “Bilinear and Quadratic Forms” at http://buzzard.ups.edu/courses/2007spring/projects/ott-paper-revised.pdf, retrieved on April, 2019

  21. A. Cayley, The Collected Mathematics Papers I (Cambridge University Press, Cambridge, 1889), p. 301

    Google Scholar 

  22. M. Zorn, Abh. Math. Sem. Univ. Hamburg 8, 123 (1931)

    Article  MathSciNet  Google Scholar 

  23. K.A. Zhevlakov, A.M. Slin’ko, I.P. Shestakov, A.I. Shirshov, Rings that are Nearly Associative. Chapter II (Academic Press, Cambridge, 1982)

    MATH  Google Scholar 

  24. J.W. Maluf, S. Okubo, Phys. Rev. D 31, 1327 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Okubo, Introduction to Octonion and Other Non-associative Algebras in Physics (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  26. C.G. Oliveira, M.D. Maia, J. Math. Phys. 20, 923 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  27. A.M. Buoncristiani, J. Math. Phys. 14, 849 (1973)

    Article  ADS  Google Scholar 

  28. A.M. Buoncristiani, J. Math. Phys. 14, 923 (1979)

    Google Scholar 

  29. Kevin MacCrimmon, A Taste of Jordan Algebras, Page 63 Through 76 (Springer, Berlin, 2000)

    Google Scholar 

  30. K.A. Zhevlakov, A.M. Klin’ko, I.P. Shestakov, A.I. Shirshov, Rings that are Nearly Associtive, Chapter II (Academic Press, Cambridge, 1982)

    Google Scholar 

  31. Boris Rosenfeld, Geometry of Lie Groups, Chapter 1 (Kluwer Academic Pubs, 1997)

  32. M. Zorn, Abh. Math. Sem. Univ. Hamburg 8, 123 (1931)

    Article  MathSciNet  Google Scholar 

  33. B.C. Chanyal, Int. J. Geom. Methods Mod. Phys. 12, 1550007–1 (2015)

    Article  MathSciNet  Google Scholar 

  34. Jamil Daboul, Robert Delbourgo, Matrix representation of octonions and generalizations. J. Math. Phys. 40, 4134 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Aharoni, The Special Theory of Relativity, 2nd edn. (Oxford University Press, London, 1965), p. 297

    MATH  Google Scholar 

  36. C.N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  37. Sakata, On a composite model for the new particles. Prog. Theor. Phys. 16, 686–688 (1956)

Download references

Acknowledgements

We would like to thank Mr. Charles L. Cunningham for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirley Marques-Bonham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques-Bonham, S., Chanyal, B.C. & Matzner, R. Yang–Mills-like field theories built on division quaternion and octonion algebras. Eur. Phys. J. Plus 135, 608 (2020). https://doi.org/10.1140/epjp/s13360-020-00626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00626-y

Navigation