Skip to main content
Log in

Kuznetsov–Ma breather-like solutions in the Salerno model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Salerno model is a discrete variant of the celebrated nonlinear Schrödinger (NLS) equation interpolating between the discrete NLS (DNLS) equation and completely integrable Ablowitz–Ladik (AL) model by appropriately tuning the relevant homotopy parameter. Although the AL model possesses an explicit time-periodic solution known as the Kuznetsov–Ma (KM) breather, the existence of time-periodic solutions away from the integrable limit has not been studied as of yet. It is thus the purpose of this work to shed light on the existence and stability of time-periodic solutions of the Salerno model. In particular, we vary the homotopy parameter of the model by employing a pseudo-arclength continuation algorithm where time-periodic solutions are identified via fixed-point iterations. We show that the solutions transform into time-periodic patterns featuring small, yet non-decaying far-field oscillations. Remarkably, our numerical results support the existence of previously unknown time-periodic solutions even at the integrable case whose stability is explored by using Floquet theory. A continuation of these patterns towards the DNLS limit is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F.T. Arecchi, Phys. Rep. 528, 47 (2013)

    ADS  MathSciNet  Google Scholar 

  2. P.T.S. DeVore, D.R. Solli, D. Borlaug, C. Ropers, B. Jalali, J. Opt. 15, 064001 (2013)

    ADS  Google Scholar 

  3. Z. Yan, J. Phys. Conf. Ser. 400, 012084 (2012)

    Google Scholar 

  4. N. Akhmediev et al., J. Opt. 18, 063001 (2016)

    ADS  Google Scholar 

  5. S. Chen, F. Baronio, J.M. Soto-Crespo, P. Grelu, D. Mihalache, J. Phys. A Math. Theor. 50, 463001 (2017)

    ADS  Google Scholar 

  6. D. Mihalache, Rom. Rep. Phys. 69, 403 (2017)

    Google Scholar 

  7. B.A. Malomed, D. Mihalache, Rom. J. Phys. 64, 106 (2019)

    Google Scholar 

  8. N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373, 675 (2009)

    ADS  Google Scholar 

  9. E. Pelinovsky, C. Kharif (eds.), Extreme Ocean Waves (Springer, New York, 2008)

    MATH  Google Scholar 

  10. C. Kharif, E. Pelinovsky, A. Slunyaev, Rogue Waves in the Ocean (Springer, New York, 2009)

    MATH  Google Scholar 

  11. A.R. Osborne, Nonlinear Ocean Waves and the Inverse Scattering Transform (Academic Press, Amsterdam, 2010)

    MATH  Google Scholar 

  12. M. Onorato, S. Residori, F. Baronio, Rogue and Shock Waves in Nonlinear Dispersive Media (Springer, Heidelberg, 2016)

    Google Scholar 

  13. A.N. Ganshin, V.B. Efimov, G.V. Kolmakov, L.P. Mezhov-Deglin, P.V.E. McClintock, Phys. Rev. Lett. 101, 065303 (2008)

    ADS  Google Scholar 

  14. H. Bailung, S.K. Sharma, Y. Nakamura, Phys. Rev. Lett. 107, 255005 (2011)

    ADS  Google Scholar 

  15. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Nature 450, 1054 (2007)

    ADS  Google Scholar 

  16. B. Kibler, J. Fatome, C. Finot, G. Millot, F. Dias, G. Genty, N. Akhmediev, J.M. Dudley, Nat. Phys. 6, 790 (2010)

    Google Scholar 

  17. B. Kibler, J. Fatome, C. Finot, G. Millot, G. Genty, B. Wetzel, N. Akhmediev, F. Dias, J.M. Dudley, Sci. Rep. 2, 463 (2012)

    ADS  Google Scholar 

  18. J.M. Dudley, F. Dias, M. Erkintalo, G. Genty, Nat. Photonics 8, 755 (2014)

    ADS  Google Scholar 

  19. B. Frisquet, B. Kibler, P. Morin, F. Baronio, M. Conforti, G. Millon, S. Wabnitz, Sci. Rep. 6, 20785 (2016)

    ADS  Google Scholar 

  20. C. Lecaplain, P. Grelu, J.M. Soto-Crespo, N. Akhmediev, Phys. Rev. Lett. 108, 233901 (2012)

    ADS  Google Scholar 

  21. G. Genty, C.M. de Sterke, O. Bang, F. Dias, N. Akhmediev, J.M. Dudley, Phys. Lett. A 374, 989 (2010)

    ADS  Google Scholar 

  22. A. Chabchoub, N.P. Hoffmann, N. Akhmediev, Phys. Rev. Lett. 106, 204502 (2011)

    ADS  Google Scholar 

  23. A. Chabchoub, N. Hoffmann, M. Onorato, N. Akhmediev, Phys. Rev. X 2, 011015 (2012)

    Google Scholar 

  24. A. Chabchoub, M. Fink, Phys. Rev. Lett. 112, 124101 (2014)

    ADS  Google Scholar 

  25. J.N. Steer, A.G.L. Borthwick, M. Onorato, A. Chabchoub, T.S. van den Bremer, Phys. Rev. Lett. 123, 184501 (2019)

    ADS  Google Scholar 

  26. M.J. Ablowitz, J.F. Ladik, J. Math. Phys. 16, 598 (1975)

    ADS  Google Scholar 

  27. M.J. Ablowitz, J.F. Ladik, J. Math. Phys. 17, 1011 (1976)

    ADS  Google Scholar 

  28. D.H. Peregrine, J. Aust. Math. Soc. B 25, 16 (1983)

    Google Scholar 

  29. E.A. Kuznetsov, Sov. Phys. Dokl. 22, 507 (1977)

    ADS  Google Scholar 

  30. Y.C. Ma, Stud. Appl. Math. 60, 43 (1979)

    ADS  MathSciNet  Google Scholar 

  31. N.N. Akhmediev, V.M. Eleonskii, N.E. Kulagin, Theor. Math. Phys. 72, 809 (1987)

    Google Scholar 

  32. A. Ankiewicz, N. Akhmediev, J.M. Soto-Crespo, Phys. Rev. E 82, 026602 (2010)

    ADS  MathSciNet  Google Scholar 

  33. Y. Ohta, J. Yang, J. Phys. A 47, 255201 (2014)

    ADS  MathSciNet  Google Scholar 

  34. P.G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation: Mathematical Analysis, Numerical Computations and Physical Perspectives (Springer, Heidelberg, 2009)

    MATH  Google Scholar 

  35. A. Maluckov, Lj Hadzievski, N. Lazarides, G.P. Tsironis, Phys. Rev. E 79, 025601(R) (2009)

    ADS  Google Scholar 

  36. C.B. Ward, P.G. Kevrekidis, N. Whitaker, Phys. Lett. A 383, 2584 (2019)

    ADS  MathSciNet  Google Scholar 

  37. C.B. Ward, P.G. Kevrekidis, T.P. Horikis, D.J. Frantzeskakis, Phys. Rev. Res. 2, 013351 (2020)

    Google Scholar 

  38. J. Cuevas-Maraver, P.G. Kevrekidis, D.J. Frantzeskakis, N.I. Karachalios, M. Haragus, G. James, Phys. Rev. E 96, 012202 (2017)

    ADS  MathSciNet  Google Scholar 

  39. M. Bertola, A. Tovbis, Commun. Pure Appl. Math. 66, 678 (2013)

    Google Scholar 

  40. A. Tikan, C. Billet, G. El, A. Tovbis, M. Bertola, T. Sylvestre, F. Gustave, S. Randoux, G. Genty, P. Suret, J.M. Dudley, Phys. Rev. Lett. 119, 033901 (2017)

    ADS  Google Scholar 

  41. E.G. Charalampidis, J. Cuevas-Maraver, P.G. Kevrekidis, D.J. Frantzeskakis, Rom. Rep. Phys. 70, 504 (2018)

    Google Scholar 

  42. C. Hoffmann, E.G. Charalampidis, D.J. Frantzeskakis, P.G. Kevrekidis, Phys. Lett. A 382, 3064 (2018)

    ADS  Google Scholar 

  43. M. Salerno, Phys. Rev. A 46, 6856 (1992)

    ADS  MathSciNet  Google Scholar 

  44. Y.S. Kivshar, M. Peyrard, Phys. Rev. A 46, 3198 (1992)

    ADS  Google Scholar 

  45. F.K. Abdullaev, A. Bouketir, A. Messikh, B.A. Umarov, Physica D 232, 54 (2007)

    ADS  MathSciNet  Google Scholar 

  46. F.I.I. Ndzana, A. Mohamadou, Chaos 27, 073118 (2017)

    ADS  MathSciNet  Google Scholar 

  47. E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I (Springer, Berlin, 1993)

    MATH  Google Scholar 

  48. A.H. Nayfeh, B. Balachandran, Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods (Wiley Series in Nonlinear Science, 1995)

  49. E. Doedel, H.B. Keller, J.P. Kernévez, Int. J. Bifurc. Chaos 01, 493–520 (1991)

    Google Scholar 

  50. C.J. Lustri, M.A. Porter, SIAM J. Appl. Dyn. Syst. 17, 1182 (2018)

    MathSciNet  Google Scholar 

  51. G.L. Afimov, A.S. Korobeinikov, C.J. Lustri, D.E. Pelinovsky, Nonlinearity 32, 3445 (2019)

    ADS  MathSciNet  Google Scholar 

  52. J. Chen, D.E. Pelinovsky, R.E. White, arXiv:1905.11638

  53. J. Chen, D.E. Pelinovsky, J. Nonlinear Sci. 29, 2797 (2019)

    ADS  MathSciNet  Google Scholar 

  54. M. Johansson, S. Aubry, Nonlinearity 10, 1151 (1997)

    ADS  MathSciNet  Google Scholar 

  55. E. Doedel. AUTO, http://indy.cs.concordia.ca/auto/

  56. H. Dankowicz, F. Schidler. COCO, https://sourceforge.net/projects/cocotools

Download references

Acknowledgements

J.C.-M. was supported by MAT2016-79866-R project (AEI/FEDER, UE) and by project P18-RT-3480 (Regional Government of Andalusia). PGK acknowledges from the U.S. National Science Foundation under Grants Nos. PHY-1602994 and DMS-1809074. He also acknowledges support from the Leverhulme Trust via a Visiting Fellowship and the Mathematical Institute of the University of Oxford for its hospitality during part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Charalampidis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, J., Charalampidis, E.G., Cuevas-Maraver, J. et al. Kuznetsov–Ma breather-like solutions in the Salerno model. Eur. Phys. J. Plus 135, 607 (2020). https://doi.org/10.1140/epjp/s13360-020-00596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00596-1

Navigation