Skip to main content
Log in

Drift Motion of Charged Particles in Inhomogeneous Magnetic and Strong Electric Fields

  • METHODOLOGICAL NOTES
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Distinctive features of the drift motion of a nonrelativistic charged particle in slowly varying magnetic and strong electric fields, for which the assumption that the electric drift velocity is small as compared to the total particle velocity is non-applicable, are studied. The variational principles of the drift motion are extended to the case of the strong electric field. The generalized Littlejohn’s Lagrangian is obtained and the extended set of drift equations is derived. The possibility of particle acceleration due to the drift motion along the strong electric field is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. An alternative method for deriving the expression (11) is based on the fundamental property of invariance of the equations of motion with respect to the substitution \(L \to L + dF{\text{/}}dt\), where F is an arbitrary scalar function. The choice of such a function in the form of \(F({\mathbf{R}},t) = - \frac{{m{{u}^{2}}}}{{2\Omega B}}{{{\mathbf{e}}}_{2}} \cdot ({{{\mathbf{e}}}_{2}} \cdot \nabla ){\mathbf{A}}\) results in the cancellation of “unnecessary” terms in expression (9).

  2. In Eq. (12), the \({{v}_{\parallel }}\) and R variables are considered to be independent, and, in the subsequent derivation of the drift equations of motion, their independent variation is used; to derive the drift equations from expression (1) for the Lagrangian \(L{\text{*}}\), it is necessary to consider \({{v}_{\parallel }}\) as a function of R: \({{v}_{\parallel }} = {{v}_{\parallel }}({\mathbf{R}})\).

  3. In the case of the strong electric field, one should also set \({\mathbf{b}} \cdot \nabla \times {{{\mathbf{V}}}_{{\text{E}}}} = 0\).

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1, Mechanics (Nauka, Moscow, 1988; Butterworth-Heinemann, Oxford, 1988).

  2. A. I. Morozov and L. S. Solov’ev, Sov. Phys.–Doklady 4, 1031 (1959).

    ADS  Google Scholar 

  3. R. G. Littlejohn, J. Plasma Phys. 29, 111 (1983). https://doi.org/10.1017/S002237780000060X

    Article  ADS  Google Scholar 

  4. J. R. Cary and A. J. Brizard, Rev. Mod. Phys. 81, 693 (2009). https://doi.org/10.1103/RevModPhys.81.693

    Article  ADS  Google Scholar 

  5. A. I. Morozov, in Plasma Accelerators, Ed. by L. A. Artsimovich, S. D. Grishin, G. L. Grozdovskii, L. V. Leskov, A. I. Morozov, A. M. Dorodnov, V. G. Padalka, and M. I. Pergament (Mashinostroenie, Moscow, 1973), p. 85 [in Russian].

    Google Scholar 

  6. A. I. Morozov and L. S. Solov’ev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 2, p. 201.

    Google Scholar 

  7. T. G. Northrop, The Adiabatic Motion of Charged Particles (Wiley Interscience, New York, 1963).

    Book  Google Scholar 

  8. V. I. Ilgisonis, Classical Problems in the Physics of Hot Plasmas (Izd. dom MEI, Moscow, 2015) [in Russian].

  9. T. Charoy, J. P. Boeuf, A. Bourdon, J. A. Carlsson, P. Chabert, B. Cuenot, D. Eremin, L. Garrigues, K. Hara, I. D. Kaganovich, A. T. Powis, A. Smolyakov, D. Sydorenko, A. Tavant, O. Vermorel, et al., Plasma Sources Sci. Technol. 28, 105010 (2019). https://doi.org/10.1088/1361-6595/ab46c5

  10. J. P. Boeuf and L. Garrigues, Phys. Plasmas 25, 061204 (2018). https://doi.org/10.1063/1.5017033

  11. A. H. Boozer, Phys. Fluids 23, 904 (1980). https://doi.org/10.1063/1.863080

    Article  ADS  MathSciNet  Google Scholar 

  12. D. V. Sivukhin, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 1.

    Google Scholar 

  13. L. I. Rudakov and R. Z. Sagdeev, in Plasma Physics and the Problem of Controlled Thermonuclear Reactions, Ed. by M. A. Leontovich (Pergamon, New York, 1959), Vol. 3, p. 321.

    Google Scholar 

  14. T. F. Volkov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 1.

    Google Scholar 

  15. K. Sh. Khodzhaev, A. G. Chirkov, and S. D. Shatalov, J. Appl. Mech. Tech. Phys. 22, 439 (1981).

    Article  ADS  Google Scholar 

  16. A. V. Timofeev, Plasma Phys. Rep. 4, 464 (1978).

    Google Scholar 

Download references

Funding

The work was supported in part by the Ministry of Education and Science of the Russian Federation (contract no. 3.2223.2017/4.6, Section 3) and the RUDN University Program 5-100 (Section 2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Sorokina.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marusov, N.A., Sorokina, E.A. & Ilgisonis, V.I. Drift Motion of Charged Particles in Inhomogeneous Magnetic and Strong Electric Fields. Plasma Phys. Rep. 46, 724–731 (2020). https://doi.org/10.1134/S1063780X20070065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20070065

Key words:

Navigation