Skip to main content
Log in

Reversible data hiding in dual encrypted halftone images using matrix embedding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Reversible data hiding (RDH) is a data-hiding technique that embeds data into cover media such that it can be recovered distortion-free after the embedded data are retrieved. Currently, for RDH in encrypted halftone images (RDH-EH), the original cover image cannot be recovered once the watermark is extracted. In this paper, we present a RDH method for encrypted halftone images based on matrix embedding, which can achieve a high embedding capacity with low distortion. Since minimal information redundancy exists in encrypted halftone images, perfectly reversible algorithms appear to be difficult to implement. Nevertheless, we proposed a completely reversible RDH method for encrypted halftone images with high embedding capacity. To address the drawback of information redundancy, the pixels of the cover image are copied into two images to guarantee reversibility. The watermark is embedded into the first cover image by changing one pixel of each block using syndrome encoding, and into the second cover image by bit replacement. The experimental results show that the halftone image can be completely recovered after the embedded data are extracted. Furthermore, our algorithm can achieve moderate computational complexity, high embedding capacity and high visual quality of marked images. This scheme is suitable for data-hiding applications such as the medical or printing applications where the reversibility is crucial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. \(\mathbb {F}_{2} \triangleq \left \{0,1\right \}\) is the binary Galois field and \(\mathbb {F}_{2}^{n} \triangleq \underbrace {\mathbb {F}_{2} \times {\cdots } \times \mathbb {F}_{2}}_{n}\)

  2. \(\mathcal {O}\) notation is used to classify algorithms according to how their running time or space requirements grow as the input size grows [38].

  3. Kodak Lossless True Color Image Suite, http://r0k.us/graphics/kodak/

References

  1. Abdallah EE, Hamza AB, Bhattacharya P (2007) MPEG video watermarking using tensor singular value decomposition. In: International conference image analysis and recognition. Springer, pp 772–783

  2. Abdallah EE, Hamza AB, Bhattacharya P (2010) Video watermarking using wavelet transform and tensor algebra. Signal Image Video Process 4(2):233–245

    Article  MATH  Google Scholar 

  3. Al-Juaid N, Gutub A (2019) Combining RSA and audio steganography on personal computers for enhancing security. SN Appl Sci 1(8):830

    Article  Google Scholar 

  4. Al-Juaid N, Gutub A, Khan EA, et al. (2018) Enhancing PC data security via combining RSA cryptography and video based steganography. Naif Arab Univ Secur Sci (NAUSS) 1(1):8–18

    Google Scholar 

  5. Alanizy N, Alanizy A, Baghoza N, Al Ghamdi M, Gutub A (2018) 3-layer PC text security via combining compression, AES cryptography 2LSB image steganography. J Res Eng Appl Sci(JREAS) 3(4):118–124

    Google Scholar 

  6. Alaseri K, Gutub A (2018) Merging secret sharing within arabic text steganography for practical retrieval. IJRDO: J Comput Sci Eng 4(9):1–17

    Google Scholar 

  7. Alassaf N, Gutub A (2019) Simulating light-weight-cryptography implementation for IoT healthcare data security applications. Int J E-Health Med Commun (IJEHMC) 10(4):1–15

    Article  Google Scholar 

  8. Alassaf N, Alkazemi B, Gutub A (2017) Applicable light-weight cryptography to secure medical data in IoT systems. J Res Eng Appl Sci (JREAS) 2 (2):50–58

    Google Scholar 

  9. Alassaf N, Gutub A, Parah SA, Al Ghamdi M (2018) Enhancing speed of SIMON: a light-weight-cryptographic algorithm for IoT applications. Multimed Tools Appl, 1–25

  10. Alotaibi M, Al-hendi D, Alroithy B, AlGhamdi M, Gutub A Secure mobile computing authentication utilizing hash, cryptography and steganography combination. J Inform Secur Cybercrimes Res (JISCR), 2(1)

  11. Alsaidi A, Al-lehaibi K, Alzahrani H, AlGhamdi M, Gutub A (2018) Compression multi-level crypto stego security of texts utilizing colored email forwarding. J Comput Sci Comput Math (JCSCM) 8(3):33–42

    Article  Google Scholar 

  12. Alsmirat MA, Al-Alem F, Al-Ayyoub M, Jararweh Y, Gupta B Impact of digital fingerprint image quality on the fingerprint recognition accuracy

  13. Atawneh S, Almomani A, Al Bazar H, Sumari P, Gupta B (2017) Secure and imperceptible digital image steganographic algorithm based on diamond encoding in DWT domain. Multimed Tools Appl 76(18):18451–18472

    Article  Google Scholar 

  14. Cao X, Du L, Wei X, Meng D, Guo X (2016) High capacity reversible data hiding in encrypted images by patch-level sparse representation. IEEE Trans Cybern 46(5):1132–1143

    Article  Google Scholar 

  15. Chen X, Zhong H, Qiu A (2019) Reversible data hiding scheme in multiple encrypted images based on code division multiplexing. Multimed Tools Appl 78(6):7499–7516

    Article  Google Scholar 

  16. Cox I, Miller M, Bloom J, Fridrich J, Kalker T (2007) Digital watermarking and steganography. Morgan Kaufmann

  17. Farooqi N, Gutub A, Khozium MO Smart community challenges: enabling IoT/M2M technology case study. Life Sci J, 16(7)

  18. Floyd RW (1976) An adaptive algorithm for spatial gray-scale. In: Proc. Soc. Inf. Disp., vol 17, pp 75–77

  19. Freitas PG, Farias MC, Araújo AP (2016) Hiding color watermarks in halftone images using maximum-similarity binary patterns. Signal Process Image Commun 48:1–11

    Article  Google Scholar 

  20. Fridrich J, Soukal D (2006) Matrix embedding for large payloads. IEEE Trans Inform Forens Secur 1(3):390–395

    Article  Google Scholar 

  21. Fu MS, Au OC (2002) Data hiding watermarking for halftone images. IEEE Trans Image Process 11(4):477–484

    Article  Google Scholar 

  22. Galand F, Kabatiansky G (2003) Information hiding by coverings. In: Proceedings 2003 IEEE information theory workshop (Cat. No. 03EX674). IEEE, pp 151–154

  23. Guo J-M, Liu Y-F (2014) Improved block truncation coding using optimized dot diffusion. IEEE Trans Image Process 23(3):1269–1275

    Article  MathSciNet  MATH  Google Scholar 

  24. Gupta B, Agrawal DP, Yamaguchi S (2016) Handbook of research on modern cryptographic solutions for computer and cyber security, 1st edn. IGI Global, Hershey

    Book  Google Scholar 

  25. Gutub A, Al-Ghamdi M (2019) Image based steganography to facilitate improving counting-based secret sharing

  26. Gutub A, Alaseri K (2019) Hiding shares of counting-based secret sharing via arabic text steganography for personal usage. J Sci Eng, 1–26

  27. Gutub A, Al-Juaid N (2018) Multi-bits stego-system for hiding text in multimedia images based on user security priority. J Comput Hardware Eng 1(2):1–9

    Google Scholar 

  28. Jarvis JF, Judice CN, Ninke W (1976) A survey of techniques for the display of continuous tone pictures on bilevel displays. Comput Graph Image Process 5(1):13–40

    Article  Google Scholar 

  29. Ji H, Fu Z (2019) Coverless information hiding method based on the keyword. Int J High Perform Comput Network 14(1):1–7

    Article  MathSciNet  Google Scholar 

  30. Kim SH, Allebach JP (2002) Impact of hvs models on model-based halftoning. IEEE Trans Image Process 11(3):258–269

    Article  Google Scholar 

  31. Kim C, Shin D, Leng L, Yang C-N (2018) Separable reversible data hiding in encrypted halftone image. Displays 55:71–79

    Article  Google Scholar 

  32. Lee C-F, Wang K-H, Chang C-C, Huang Y-L (2009) A reversible data hiding scheme based on dual steganographic images. In: Proceedings of the 3rd international conference on ubiquitous information management and communication. ACM, pp 228–237

  33. Li J, Yu C, Gupta B, Ren X (2018) Color image watermarking scheme based on quaternion Hadamard transform and Schur decomposition. Multimed Tools Appl 77(4):4545–4561

    Article  Google Scholar 

  34. Li Q, Yan B, Li H, Chen N (2018) Separable reversible data hiding in encrypted images with improved security and capacity. Multimed Tools Appl 77(23):30749–30768

    Article  Google Scholar 

  35. Lien BK, Lin Y-M, Lee K-Y (2012) High-capacity reversible data hiding by maximum-span pixel pairing on ordered dithered halftone images. In: 2012 19th International conference on systems, signals and image processing (IWSSIP). IEEE, pp 76–79

  36. Lo C-C, Lee C-M, Liao B-Y, Pan J-S (2008) Halftone image data hiding with reference to original multitone image. In: 2008 International conference on intelligent information hiding and multimedia signal processing. IEEE, pp 265–268

  37. Ma K, Zhang W, Zhao X, Yu N, Li F (2013) Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans Inform Forens Secur 8(3):553–562

    Article  Google Scholar 

  38. Mohr A Quantum computing in complexity theory and theory of computation. Carbondale

  39. Moon TK (2005) Error correction coding – mathematical methods and algorithms. Wiley, pp 2001–2006

  40. Nguyen T-S, Chang C-C, Chang W-C (2016) High capacity reversible data hiding scheme for encrypted images. Signal Process Image Commun 44:84–91

    Article  Google Scholar 

  41. Puech W, Chaumont M, Strauss O (2008) A reversible data hiding method for encrypted images. In: Security, forensics, steganography, and watermarking of multimedia contents X, vol 6819. International Society for Optics and Photonics, p 68191E

  42. Qian Z, Zhang X, Wang S (2014) Reversible data hiding in encrypted jpeg bitstream. IEEE Trans Multimed 16(5):1486–1491

    Article  Google Scholar 

  43. Qian Z, Xu H, Luo X, Zhang X (2019) New framework of reversible data hiding in encrypted jpeg bitstreams. IEEE Trans Circ Syst Video Technol 29(2):351–362

    Article  Google Scholar 

  44. Qin C, Zhang X (2015) Effective reversible data hiding in encrypted image with privacy protection for image content. J Vis Commun Image Represent 31:154–164

    Article  Google Scholar 

  45. Rivest RL (1992) The rc4 encryption algorithm. RSA Data Security, Inc., pp 9–2

  46. Shi H, Liu D, Lu H, Zhou C (2017) A homomorphic encrypted reversible information hiding scheme for integrity authentication and piracy tracing. Multimed Tools Appl, 1–33

  47. Steganalysis HCDB, Westfeld A (2001) F5—a steganographic algorithm. In: Information hiding: 4th international workshop, IH 2001, Pittsburgh, PA, USA, April 25-27, 2001. Proceedings, vol 2137. Springer, p 289

  48. Tai W-L, Yeh C-M, Chang C-C (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circ Syst Video Technol 19(6):906–910

    Article  Google Scholar 

  49. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  50. Ulichney R (1987) Digital halftoning. MIT Press

  51. Wu X, Sun W (2014) High-capacity reversible data hiding in encrypted images by prediction error. Signal Process 104:387–400

    Article  Google Scholar 

  52. Wu X, Weng J, Yan W (2018) Adopting secret sharing for reversible data hiding in encrypted images. Signal Process 143:269–281

    Article  Google Scholar 

  53. Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans Inform Forens Secur 11(11):2594–2608

    Article  Google Scholar 

  54. Xuan G, Yang C, Zhen Y, Shi YQ, Ni Z (2004) Reversible data hiding using integer wavelet transform and companding technique. In: International workshop on digital watermarking. Springer, pp 115–124

  55. Yang C-H, Tsai M-H (2010) Improving histogram-based reversible data hiding by interleaving predictions. IET Image Process 4(4):223–234

    Article  Google Scholar 

  56. Yi S, Zhou Y (2017) Binary-block embedding for reversible data hiding in encrypted images. Signal Process 133:40–51

    Article  Google Scholar 

  57. Yu C, Li J, Li X, Ren X, Gupta B (2018) Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram. Multimed Tools Appl 77(4):4585–4608

    Article  Google Scholar 

  58. Zhang X (2011) Reversible data hiding in encrypted image. IEEE Signal Process Lett 18(4):255–258

    Article  Google Scholar 

  59. Zhang X (2012) Separable reversible data hiding in encrypted image. IEEE Trans Inform Forens Secur 7(2):826–832

    Article  Google Scholar 

  60. Zhou J, Sun W, Dong L, Liu X, Au OC, Tang YY (2016) Secure reversible image data hiding over encrypted domain via key modulation. IEEE Trans Circ Syst Video Technol 26(3):441–452

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC) (No. 61272432) and Shandong Provincial Natural Science Foundation (No. ZR2014JL044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, YX., Li, Q., Yan, B. et al. Reversible data hiding in dual encrypted halftone images using matrix embedding. Multimed Tools Appl 79, 27659–27682 (2020). https://doi.org/10.1007/s11042-020-08626-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08626-x

Keywords

Navigation