Skip to main content

Advertisement

Log in

Modeling the chemo-mechanical behavior of all-solid-state batteries: a review.

  • Recent advances in Computational Mechanics and Innovative Materials
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Solid-state-batteries (SSBs) present a promising technology for next-generation batteries due to their superior properties including increased energy density, wider electrochemical window and safer electrolyte design. Commercialization of SSBs, however, will depend on the resolution of a number of critical chemical and mechanical stability issues. The resolution of these issues will in turn depend heavily on our ability to accurately model these systems such that appropriate material selection, microstructure design, and operational parameters may be determined. In this article we review the current state-of-the art modeling tools with a focus on chemo-mechanics. Some of the key chemo-mechanical problems in SSBs involve dendrite growth through the solid-state electrolyte (SSE), interphase formation at the anode/SSE interface, and damage/decohesion of the various phases in the solid-state composite cathode. These mechanical processes in turn lead to capacity fade, impedance increase, and short-circuit of the battery, ultimately compromising safety and reliability. The article is divided into the three natural components of an all-solid-state architecture. First, modeling efforts pertaining to Li-metal anodes and dendrite initiation and growth mechanisms are reviewed, making the transition from traditional liquid electrolyte anodes to next generation all-solid-state anodes. Second, chemo-mechanics modeling of the SSE is reviewed with a particular focus on the formation of a thermodynamically unstable interphase layer at the anode/SSE interface. Finally, we conclude with a review of chemo-mechanics modeling efforts for solid-state composite cathodes. For each of these critical areas in a SSB we conclude by highlighting the key open areas for future research as it pertains to modeling the chemo-mechanical behavior of these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652

    Google Scholar 

  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2015) Li-O2 and Li-S batteries with high energy storage. Nat Mater 11:19

    Google Scholar 

  3. Yao X, Liu D, Wang C, Long P, Peng G, Hu YS, Li H, Chen L, Xu X (2016) High-energy all-solid-state lithium batteries with ultralong cycle life. Nano Lett 16(11):7148

    Google Scholar 

  4. Li J, Ma C, Chi M, Liang C, Dudney NJ (2015) Solid electrolyte: the key for high‐voltage lithium batteries. Adv Energy Mater 5:1401408

    Google Scholar 

  5. Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interfaces 7(42):23685

    Google Scholar 

  6. Richards WD, Miara LJ, Wang Y, Kim JC, Ceder G (2015) Interface stability in solid-state batteries. Chem Mater 28(1):266

    Google Scholar 

  7. Roth EP, Orendorff CJ (2012) How electrolytes influence battery safety. Electrochem Soc Interface 21(2):45

    Google Scholar 

  8. Yang C, Fu K, Zhang Y, Hitz E, Hu L (2017) Protected lithium-metal anodes in batteries: from liquid to solid. Adv Mater 29(36):1701169

    Google Scholar 

  9. Zhang W, Nie J, Li F, Wang ZL, Sun C (2018) A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 45:413

    Google Scholar 

  10. Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M (2003) All-solid-state Li/S batteries with highly conductive glass-ceramic electrolytes. Electrochem Commun 5(8):701

    Google Scholar 

  11. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 46(41):7778

    Google Scholar 

  12. Thokchom JS, Gupta N, Kumar B (2008) Superionic conductivity in a lithium aluminum germanium phosphate glass-ceramic. J Electrochem Soc 155(12):A915

    Google Scholar 

  13. Allen J, Wolfenstine J, Rangasamy E, Sakamoto J (2012) Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sources 206:315

    Google Scholar 

  14. Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M (2014) A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ Sci 7:627

    Google Scholar 

  15. Thangadurai V, Pinzaru D, Narayanan S, Baral A Kumar (2015) Correction to “Fast solid-state li ion conducting garnet-type structure metal oxides for energy storage”. J Phys Chem Lett 6(3):347

    Google Scholar 

  16. Song X, Lu Y, Wang F, Zhao X, Chen H (2020) A coupled electro-chemo-mechanical model for all-solid-state thin film Li-ion batteries: the effects of bending on battery performances. J Power Sources 452:227803

    Google Scholar 

  17. Ren Y, Shen Y, Lin Y, Nan CW (2015) Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem Commun 57:27

    Google Scholar 

  18. Sharafi A, Meyer HM, Nanda J, Wolfenstine J, Sakamoto J (2016) Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J Power Sources 302:135

    Google Scholar 

  19. Cheng E, Sharafi A, Sakamoto J (2016) Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim Acta 223:85

    Google Scholar 

  20. Aguesse F, Manalastas W, Buannic L, Lopez del Amo JM, Singh G, Llords A, Kilner J (2017) Investigating the dendritic growth during full cell cycling of garnet electrolyte in direct contact with li Metal. ACS Appl Mater Interfaces 9(4):3808

    Google Scholar 

  21. Porz L, Swamy T, Sheldon BW, Rettenwander D, Frmling T, Thaman HL, Berendts S, Uecker R, Carter WC, Chiang YM (2017) Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv Energy Mater 7(20):1701003

    Google Scholar 

  22. Narayan S, Anand L (2018) A large deformation elastic-viscoplastic model for lithium. Extreme Mech Lett 24:21

    Google Scholar 

  23. Kobayashi T, Yamada A, Kanno R (2008) Interfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim Acta 53(15):5045

    Google Scholar 

  24. Sakuda A, Hayashi A, Tatsumisago M (2010) Interfacial observation between LiCoO2 electrode and Li2S- P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem Mater 22(3):949

    Google Scholar 

  25. Santhanagopalan D, Qian D, McGilvray T, Wang Z, Wang F, Camino F, Graetz J, Dudney N, Meng YS (2014) Interface limited lithium transport in solid-state batteries. J Phys Chem Lett 5(2):298

    Google Scholar 

  26. Wenzel S, Randau S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J (2016) Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem Mater 28(7):2400

    Google Scholar 

  27. Lewis JA, Cortes FJQ, Boebinger MG, Tippens J, Marchese TS, Kondekar N, Liu X, Chi M, McDowell MT (2019) Interphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett 4(2):591

    Google Scholar 

  28. Koerver R, Zhang W, de Biasi L, Schweidler S, Kondrakov AO, Kolling S, Brezesinski T, Hartmann P, Zeier WG, Janek J (2018) Chemo-mechanical expansion of lithium electrode materials-on the route to mechanically optimized all-solid-state batteries. Energy Environ Sci 11(8):2142

    Google Scholar 

  29. Zhang W, Richter FH, Culver SP, Leichtweiss T, Lozano JG, Dietrich C, Bruce PG, Zeier WG, Janek J (2018) Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl Mater Interfaces 10(26):22226

    Google Scholar 

  30. Goodenough JB, Kim Y (2010) Challenges for rechargeable li batteries. Chem Mater 22(3):587

    Google Scholar 

  31. Takada K (2013) Progress and prospective of solid-state lithium batteries. Acta Mater 61(3):759

    Google Scholar 

  32. Lewis JA, Tippens J, Cortes FJQ, McDowell MT (2019) Chemo-mechanical challenges in solid-state batteries. Trends Chem 1:845–857

    Google Scholar 

  33. Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao YC, Wei F, Mai L (2018) Interfaces in solid-state lithium batteries. Joule 2(10):1991

    Google Scholar 

  34. Shen Z, Zhang W, Zhu G, Huang Y, Feng Q, Lu Y (2020) Design principles of the anode-electrolyte interface for all solid-state lithium metal batteries. Small Methods 4:1900592

    Google Scholar 

  35. Wang P, Qu W, Song WL, Chen H, Chen R, Fang D (2019) Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Adv Funct Mater 29(27):1900950

    Google Scholar 

  36. Zhang F, Huang QA, Tang Z, Li A, Shao Q, Zhang L, Li X, Zhang J (2020) A review of mechanics-related material damages in all-solid-state batteries: mechanisms, performance impacts and mitigation strategies. Nano Energy 70:104545

    Google Scholar 

  37. Zhao Y, Stein P, Bai Y, Al-Siraj M, Yang Y, Xu BX (2019) A review on modeling of electro-chemo-mechanics in lithium-ion batteries. J Power Sources 413:259

    Google Scholar 

  38. Albertus P, Babinec S, Litzelman S, Newman A (2018) Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat Energy 3:16

    Google Scholar 

  39. Kerman K, Luntz A, Viswanathan V, Chiang YM, Chen Z (2017) practical challenges hindering the development of solid state Li ion batteries. J Electrochem Soc 164(7):A1731

    Google Scholar 

  40. Barton JL, Bockris JO, Ubbelohde ARJP (1962) The electrolytic growth of dendrites from ionic solutions. Proc R Soc Lond A 268(1335):485

    Google Scholar 

  41. Diggle JW, Despic AR, Bockris JO (1969) The mechanism of the dendritic electrocrystallization of zinc. J Electrochem Soc 116(11):1503

    Google Scholar 

  42. Chazalviel JN (1990) Electrochemical aspects of the generation of ramified metallic electrodeposits. Phys Rev A 42:7355

    Google Scholar 

  43. Brissot C, Rosso M, Chazalviel JN, Baudry P, Lascaud S (1998) In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochim Acta 43(10):1569

    Google Scholar 

  44. Monroe C, Newman J (2003) Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions. J Electrochem Soc 150(10):A1377

    Google Scholar 

  45. Mullins W, Sekerka R (1963) Morphological stability of a particle growing by difusion or heat flow. J Appl Phys 34:323

    Google Scholar 

  46. Mullins WW, Sekerka RF (1964) Stability of a planar interface during solidification of a dilute binary alloy. J Appl Phys 35(2):444

    Google Scholar 

  47. Aogaki R, Makino T (1981) Theory of powdered metal formation in electrochemistry-morphological instability in galvanostatic crystal growth under diffusion control. Electrochim Acta 26(11):1509

    Google Scholar 

  48. Aogaki R (1982) Image analysis of morphological instability in galvanostatic electrocrystallization: I. General expression for the growth mode of surface irregularities. J Electrochem Soc 129(11):2442

    Google Scholar 

  49. Barkey DP, Muller RH, Tobias CW (1989) Roughness development in metal electrodeposition: II. Stability theory. J Electrochem Soc 136(8):2207

    Google Scholar 

  50. Pritzker MD, Fahidy TZ (1992) Morphological stability of a planar metal electrode during potentiostatic electrodeposition and electrodissolution. Electrochim Acta 37(1):103

    Google Scholar 

  51. Sundstrm LG, Bark FH (1995) On morphological instability during electrodeposition with a stagnant binary electrolyte. Electrochim Acta 40(5):599

    Google Scholar 

  52. Selim R, Bro P (1974) Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte. J Electrochem Soc 121(11):1457

    Google Scholar 

  53. Stewart SG, Newman J (2008) The use of UV/vis absorption to measure diffusion coefficients in LiPF6 electrolytic solutions. J Electrochem Soc 155(1):F13

    Google Scholar 

  54. Akolkar R (2013) Mathematical model of the dendritic growth during lithium electrodeposition. J Power Sources 232:23

    Google Scholar 

  55. Akolkar R (2014) Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature. J Power Sources 246:84

    Google Scholar 

  56. Ely DR, Garca RE (2013) Heterogeneous nucleation and growth of lithium electrodeposits on negative electrodes. J Electrochem Soc 160(4):A662

    Google Scholar 

  57. Guyer JE, Boettinger WJ, Warren JA, McFadden GB (2004) Phase field modeling of electrochemistry. II. Kinetics. Phys Rev E 69(2):021604

    Google Scholar 

  58. Shibuta Y, Okajima Y, Suzuki T (2007) Phase-field modeling for electrodeposition process. Sci Technol Adv Mater 8(6):511

    Google Scholar 

  59. Liang L, Qi Y, Xue F, Bhattacharya S, Harris SJ, Chen LQ (2012) Nonlinear phase-field model for electrode-electrolyte interface evolution. Phys Rev E 86(5):051609

    Google Scholar 

  60. Ely DR, Jana A, García RE (2014) Phase field kinetics of lithium electrodeposits. J Power Sources 272:581

    Google Scholar 

  61. Chen L, Zhang HW, Liang LY, Liu Z, Qi Y, Lu P, Chen J, Chen LQ (2015) Modulation of dendritic patterns during electrodeposition: a nonlinear phase-field model. J Power Sources 300:376

    Google Scholar 

  62. Cogswell DA (2015) Quantitative phase-field modeling of dendritic electrodeposition. Phys Rev E 92(1):011301

    Google Scholar 

  63. Monroe C, Newman J (2004) The effect of interfacial deformation on electrodeposition kinetics. J Electrochem Soc 151(6):A880

    Google Scholar 

  64. Ganser M, Hildebrand FE, Klinsmann M, Hanauer M, Kamlah M, McMeeking RM (2019) An extended formulation of butler-volmer electrochemical reaction kinetics including the influence of mechanics. J Electrochem Soc 166(4):H167

    Google Scholar 

  65. Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396

    Google Scholar 

  66. Yu S, Siegel DJ (2018) Grain boundary softening: a potential mechanism for lithium metal penetration through stiff solid electrolytes. ACS Appl Mater Interfaces 10(44):38151

    Google Scholar 

  67. Tian HK, Liu Z, Ji Y, Chen LQ, Qi Y (2019) Interfacial electronic properties dictate Li dendrite growth in solid electrolytes. Chem Mater 31(18):7351

    Google Scholar 

  68. Klinsmann M, Hildebrand FE, Ganser M, McMeeking RM (2019) Dendritic cracking in solid electrolytes driven by lithium insertion. J Power Sources 442:227226

    Google Scholar 

  69. Tian HK, Xu B, Qi Y (2018) Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J Power Sources 392:79

    Google Scholar 

  70. Barai P, Higa K, Srinivasan V (2017) Effect of initial state of lithium on the propensity for dendrite formation: a theoretical study. J Electrochem Soc 164(2):A180

    Google Scholar 

  71. Ahmad Z, Viswanathan V (2017) Stability of electrodeposition at solid-solid interfaces and implications for metal anodes. Phys Rev Lett 119:056003

    Google Scholar 

  72. Ahmad Z, Viswanathan V (2017) Role of anisotropy in determining stability of electrodeposition at solid-solid interfaces. Phys Rev Mater 1:055403

    Google Scholar 

  73. Natsiavas P, Weinberg K, Rosato D, Ortiz M (2016) Effect of prestress on the stability of electrode-electrolyte interfaces during charging in lithium batteries. J Mech Phys Solids 95:92

    MathSciNet  Google Scholar 

  74. McMeeking RM, Ganser M, Klinsmann M, Hildebrand FE (2019) Metal electrode surfaces can roughen despite the constraint of a stiff electrolyte. J Electrochem Soc 166(6):A984. https://doi.org/10.1149/2.0221906jes

    Article  Google Scholar 

  75. Barai P, Higa K, Srinivasan V (2017) Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys Chem Chem Phys 19:20493

    Google Scholar 

  76. Wang Y, Cheng YT (2017) A nanoindentation study of the viscoplastic behavior of pure lithium. Scr Mater 130:191

    Google Scholar 

  77. Xu C, Ahmad Z, Aryanfar A, Viswanathan V, Greer JR (2017) Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes. Proc Nat Acad Sci 114(1):57

    Google Scholar 

  78. LePage WS, Chen Y, Kazyak E, Chen KH, Sanchez AJ, Poli A, Arruda EM, Thouless MD, Dasgupta NP (2019) Lithium mechanics: roles of strain rate and temperature and implications for lithium metal batteries. J Electrochem Soc 166(2):A89

    Google Scholar 

  79. Masias A, Felten N, Garcia-Mendez R, Wolfenstine J, Sakamoto J (2019) Elastic, plastic, and creep mechanical properties of lithium metal. J Mater Sci 54(3):2585

    Google Scholar 

  80. Fincher CD, Ojeda D, Zhang Y, Pharr GM, Pharr M (2020) Mechanical properties of metallic lithium: from nano to bulk scales. Acta Mater 186:215

    Google Scholar 

  81. Schultz RP (2002) Lithium: measurement of young’s modulus and yield strength. Tech. rep. Fermi National Accelerator Lab., Batavia, IL (US)

  82. Ferrese A, Newman J (2014) Mechanical deformation of a lithium-metal anode due to a very stiff separator. J Electrochem Soc 161(9):A1350

    Google Scholar 

  83. Barai P, Higa K, Srinivasan V (2017) Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys Chem Chem Phys 19(31):20493

    Google Scholar 

  84. Anand L, Narayan S (2019) An elastic-viscoplastic model for lithium. J Electrochem Soc 166(6):A1092

    Google Scholar 

  85. Wenzel S, Sedlmaier SJ, Dietrich C, Zeier WG, Janek J (2018) Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion 318:102

    Google Scholar 

  86. Wang S, Xu H, Li W, Dolocan A, Manthiram A (2017) Interfacial chemistry in solid-state batteries: formation of interphase and its consequences. J Am Chem Soc 140(1):250

    Google Scholar 

  87. Tippens J, Miers J, Afshar A, Lewis J, Cortes FJQ, Qiao H, Marchese TS, Di Leo CV, Saldana C, McDowell MT (2019) Visualizing chemo-mechanical degradation of a solid-state battery electrolyte. ACS Energy Lett 4:1475–1483

    Google Scholar 

  88. Leo CVD, Rejovitzky E, Anand L (2015) Diffusion deformation theory for amorphous silicon anodes: the role of plastic deformation on electrochemical performance. Int J Solids Struct 67–68:283

    Google Scholar 

  89. Rejovitzky E, Di Leo CV, Anand L (2015) A theory and a simulation capability for the growth of a solid electrolyte interphase layer at an anode particle in a Li-ion battery. J Mech Phys Solids 78:210

    MathSciNet  Google Scholar 

  90. Loeffel K, Anand L (2011) A chemo-thermo-mechanically coupled theory for elastic-viscoplastic deformation, diffusion, and volumetric swelling due to a chemical reaction. Int J Plast 27(9):1409

    MATH  Google Scholar 

  91. Busso EP, Qian ZQ (2006) A mechanistic study of microcracking in transversely isotropic ceramic-metal systems. Acta Mater 54(2):325

    Google Scholar 

  92. Karlsson AM, Xu T, Evans A (2002) The effect of the thermal barrier coating on the displacement instability in thermal barrier systems. Acta Mater 50(5):1211

    Google Scholar 

  93. Loeffel K, Anand L, Gasem ZM (2013) On modeling the oxidation of high-temperature alloys. Acta Mater 61(2):399

    Google Scholar 

  94. Zhao Y, Chen Y, Ai S, Fang D (2019) A diffusion, oxidation reaction and large viscoelastic deformation coupled model with applications to SiC fiber oxidation. Int J Plast 118:173

    Google Scholar 

  95. Salvadori A, McMeeking R, Grazioli D, Magri M (2018) A coupled model of transport-reaction-mechanics with trapping. Part I—small strain analysis. J Mech Phys Solids 114:1

    MathSciNet  MATH  Google Scholar 

  96. Di Leo CV, Anand L (2013) Hydrogen in metals: a coupled theory for species diffusion and large elastic-plastic deformations. Int J Plast 43:42

    Google Scholar 

  97. Anand L, Mao Y, Talamini B (2019) On modeling fracture of ferritic steels due to hydrogen embrittlement. J Mech Phys Solids 122:280

    MathSciNet  MATH  Google Scholar 

  98. Miehe C, Dal H, Schänzel LM, Raina A (2016) A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles. Int J Numer Methods Eng 106(9):683

    MathSciNet  MATH  Google Scholar 

  99. Han X, Gong Y, Fu KK, He X, Hitz GT, Dai J, Pearse A, Liu B, Wang H, Rubloff G et al (2017) Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat Mater 16(5):572

    Google Scholar 

  100. Ganser M, Hildebrand FE, Kamlah M, McMeeking RM (2019) A finite strain electro-chemo-mechanical theory for ion transport with application to binary solid electrolytes. J Mech Phys Solids 125:681

    MathSciNet  Google Scholar 

  101. Newman J, Thomas-Alyea KE (2012) Electrochemical systems. Wiley, New York

    Google Scholar 

  102. Bucci G, Chiang YM, Carter WC (2016) Formulation of the coupled electrochemical-mechanical boundary-value problem, with applications to transport of multiple charged species. Acta Mater 104:33

    Google Scholar 

  103. Grazioli D, Zadin V, Brandell D, Simone A (2019) Electrochemical-mechanical modeling of solid polymer electrolytes: stress development and non-uniform electric current density in trench geometry microbatteries. Electrochim Acta 296:1142

    Google Scholar 

  104. Zavattieri P, Raghuram P, Espinosa H (2001) A computational model of ceramic microstructures subjected to multi-axial dynamic loading. J Mech Phys Solids 49(1):27

    MATH  Google Scholar 

  105. Templeton DW, Holmquist TJ, MEYER HW, Grove DJ, Leavy B (2002) A comparison of ceramic material models. Ceram Trans 134:299

    Google Scholar 

  106. Deshpande VS, Gamble EN, Compton BG, McMeeking RM, Evans AG, Zok FW (2011) A constitutive description of the inelastic response of ceramics. J Am Ceram Soc 94:s204

    Google Scholar 

  107. Deshpande V, Evans A (2008) Inelastic deformation and energy dissipation in ceramics: a mechanism-based constitutive model. J Mech Phys Solids 56(10):3077

    MATH  Google Scholar 

  108. Holland CC, McMeeking RM (2015) The influence of mechanical and microstructural properties on the rate-dependent fracture strength of ceramics in uniaxial compression. Int J Impact Eng 81:34

    Google Scholar 

  109. Espinosa HD, Zavattieri PD, Dwivedi SK (1998) A finite deformation continuum\(\backslash\)discrete model for the description of fragmentation and damage in brittle materials. J Mech Phys Solids 46(10):1909

    MathSciNet  MATH  Google Scholar 

  110. Ashby M, Sammis C (1990) The damage mechanics of brittle solids in compression. Pure Appl Geophys 133(3):489

    Google Scholar 

  111. Kimberley J, Ramesh K, Daphalapurkar N (2013) A scaling law for the dynamic strength of brittle solids. Acta Mater 61(9):3509

    Google Scholar 

  112. Rice RW (1977) Microstructure dependence of mechanical behavior of ceramics. In: Treatise on materials science & technology, vol 11. Elsevier, pp 199–381

  113. Zhang X, Krischok A, Linder C (2016) A variational framework to model diffusion induced large plastic deformation and phase field fracture during initial two-phase lithiation of silicon electrodes. Comput Methods Appl Mech Eng 312:51

    MathSciNet  MATH  Google Scholar 

  114. Yamakawa S, Nagasako N, Yamasaki H, Koyama T, Asahi R (2018) Phase-field modeling of stress generation in polycrystalline LiCoO2. Solid State Ion 319:209

    Google Scholar 

  115. Ke X, Wang Y, Ren G, Yuan C (2019) Towards rationally mechanical design of inorganic solid electrolytes for all-solid-state lithium ion batteries. Energy Storage Mater 26:313–324

    Google Scholar 

  116. Deng Z, Wang Z, Chu IH, Luo J, Ong SP (2016) Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J Electrochem Soc 163(2):A67

    Google Scholar 

  117. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758

    Google Scholar 

  118. Pugh S (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond Edinb Dublin Philos Mag J Sci 45(367):823

    Google Scholar 

  119. Wu M, Xu B, Lei X, Huang K, Ouyang C (2018) Bulk properties and transport mechanisms of a solid state antiperovskite Li-ion conductor Li 3 OCl: insights from first principles calculations. J Mater Chem A 6(3):1150

    Google Scholar 

  120. Mattesini M, Soler JM, Ynduráin F (2006) Ab initio study of metal-organic framework-5 Zn\(_{4}\) O(\(1,4 -\) benzenedicarboxylate )\(_{3}\): an assessment of mechanical and spectroscopic properties. Phys Rev B 73:094111

    Google Scholar 

  121. Wang Z, Wu M, Liu G, Lei X, Xu B, Ouyang C (2014) Elastic properties of new solid state electrolyte material Li10GeP2S12: a study from first-principles calculations. Int J Electrochem Sci 9(2):562

    Google Scholar 

  122. Yang Y, Wu Q, Cui Y, Chen Y, Shi S, Wang RZ, Yan H (2016) Elastic properties, defect thermodynamics, electrochemical window, phase stability, and Li+ mobility of Li3PS4: insights from first-principles calculations. ACS Appl Mater Interfaces 8(38):25229

    Google Scholar 

  123. Chen H, Hong T (2019) First-principles investigation of the mechanical and thermodynamic properties of the metal-borohydrides as electrolytes for solid-state batteries. J Electrochem Soc 166(4):A493

    MathSciNet  Google Scholar 

  124. Ahmad Z, Viswanathan V (2016) Quantification of uncertainty in first-principles predicted mechanical properties of solids: application to solid ion conductors. Phys Rev B 94(6):064105

    Google Scholar 

  125. White A (2012) The materials genome initiative: one year on. MRS Bull 37(8):715

    Google Scholar 

  126. Kaufman L, Ågren J (2014) CALPHAD, first and second generation—birth of the materials genome. Scr Mater 70:3

    Google Scholar 

  127. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G et al (2013) Commentary: the materials project: a materials genome approach to accelerating materials innovation. Apl Mater 1(1):011002

    Google Scholar 

  128. Rajan K (2005) Materials informatics. Mater Today 8(10):38

    Google Scholar 

  129. Ramprasad R, Batra R, Pilania G, Mannodi-Kanakkithodi A, Kim C (2017) Machine learning in materials informatics: recent applications and prospects. NPJ Comput Mater 3(1):54

    Google Scholar 

  130. Agrawal A, Choudhary A (2016) Perspective: materials informatics and big data: realization of the “fourth paradigm” of science in materials science. Apl Mater 4(5):053208

    Google Scholar 

  131. Makeev MA, Rajput NN (2019) Computational screening of electrolyte materials: status quo and open problems. Curr Opin Chem Eng 23:58

    Google Scholar 

  132. Bhowmik A, Castelli IE, Garcia-Lastra JM, Jørgensen PB, Winther O, Vegge T (2019) A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning. Energy Storage Mater 21:446–456

    Google Scholar 

  133. Ahmad Z, Xie T, Maheshwari C, Grossman JC, Viswanathan V (2018) Machine learning enabled computational screening of inorganic solid electrolytes for suppression of dendrite formation in lithium metal anodes. ACS Central Sci 4(8):996

    Google Scholar 

  134. Tsai CL, Roddatis V, Chandran CV, Ma Q, Uhlenbruck S, Bram M, Heitjans P, Guillon O (2016) Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl Mater Interfaces 8(16):10617

    Google Scholar 

  135. Woodford W, Chiang Y, Carter W (2010) “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis. J Electrochem Soc 157(10):A1052

    Google Scholar 

  136. Zhao K, Pharr M, Vlassak JJ, Suo Z (2010) Fracture of electrodes in lithium-ion batteries caused by fast charging. J Appl Phys 108(7):073517

    Google Scholar 

  137. Bai P, Cogswell D, Bazant M (2011) Suppression of phase separation in LiFePO\(_{4}\) nanoparticles during battery discharge. Nano Lett 11(11):4890–4896

    Google Scholar 

  138. Cogswell DA, Bazant MZ (2013) Theory of coherent nucleation in phase-separating nanoparticles. Nano Lett 13(7):3036

    Google Scholar 

  139. Bohn E, Eckl T, Kamlah M, McMeeking R (2013) A model for lithium diffusion and stress generation in an intercalation storage particle with phase change. J Electrochem Soc 160(10):A1638

    Google Scholar 

  140. Purkayastha R, McMeeking R (2016) Stress due to the intercalation of lithium in cubic-shaped particles: a parameter study. Meccanica 51(12):3081

    MathSciNet  Google Scholar 

  141. Di Leo C, Rejovitzky E, Anand L (2014) A Cahn–Hilliard-type phase-field theory for species diffusion coupled with large elastic deformations: application to phase-separating Li-ion electrode materials. J Mech Phys Solids 70:1

    MathSciNet  MATH  Google Scholar 

  142. Zhao K, Pharr M, Cai S, Vlassak J, Suo Z (2011) Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J Am Ceram Soc 94(s1):s226–s235

    Google Scholar 

  143. Bower AF, Guduru P (2012) A simple finite element model of diffusion, finite deformation, plasticity and fracture in lithium ion insertion electrode materials. Modell Simul Mater Sci Eng 20(4):045004

    Google Scholar 

  144. Anand L (2012) A Cahn–Hilliard-type theory for species diffusion coupled with large elastic-plastic deformations. J Mech Phys Solids 60(12):1983

    MathSciNet  MATH  Google Scholar 

  145. Cui Z, Gao F, Qu J (2012) A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J Mech Phys Solids 60(7):1280

    MathSciNet  Google Scholar 

  146. Bucci G, Nadimpalli S, Sethuraman V, Bower A, Guduru P (2014) Measurement and modeling of the mechanical and electrochemical response of amorphous Si thin film electrodes during cyclic lithiation. J Mech Phys Solids 62:276

    Google Scholar 

  147. Lyu D, Ren B, Li S (2019) Failure modes and mechanisms for rechargeable Lithium-based batteries: a state-of-the-art review. Acta Mech 230(3):701

    Google Scholar 

  148. Cogswell DA, Bazant MZ (2018) Size-dependent phase morphologies in LiFePO4 battery particles. Electrochem Commun 95:33

    Google Scholar 

  149. Nadkarni N, Rejovitsky E, Fraggedakis D, Di Leo CV, Smith RB, Bai P, Bazant MZ (2018) Interplay of phase boundary anisotropy and electro-auto-catalytic surface reactions on the lithium intercalation dynamics in Li X FePO 4 plateletlike nanoparticles. Phys Rev Mater 2(8):085406

    Google Scholar 

  150. Zhang T, Kamlah M (2019) Phase-field modeling of the particle size and average concentration dependent miscibility gap in nanoparticles of LixMn2O4, LixFePO4, and NaxFePO4 during insertion. Electrochim Acta 298:31

    Google Scholar 

  151. Bower A, Guduru P, Sethuraman V (2011) A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J Mech Phys Solids 59(4):804

    MathSciNet  MATH  Google Scholar 

  152. Zhang T, Kamlah M (2020) Mechanically Coupled Phase-Field Modeling of Microstructure Evolution in Sodium Ion Batteries Particles of Na x FePO 4. J Electrochem Soc 167(2):020508

    Google Scholar 

  153. McDowell MT, Xia S, Zhu T (2016) The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech Lett 9:480

    Google Scholar 

  154. Huang S, Fan F, Li J, Zhang S, Zhu T (2013) Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries. Acta Mater 61(12):4354

    Google Scholar 

  155. Bower AF, Guduru PR, Chason E (2015) Analytical solutions for composition and stress in spherical elastic-plastic lithium-ion electrode particles containing a propagating phase boundary. Int J Solids Struct 69:328

    Google Scholar 

  156. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L et al (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):310

    Google Scholar 

  157. Sethuraman VA, Chon MJ, Shimshak M, Srinivasan V, Guduru PR (2010) In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J Power Sources 195(15):5062

    Google Scholar 

  158. Sethuraman VA, Van Winkle N, Abraham DP, Bower AF, Guduru PR (2012) Real-time stress measurements in lithium-ion battery negative-electrodes. J Power Sources 206:334

    Google Scholar 

  159. Nadimpalli SP, Sethuraman VA, Bucci G, Srinivasan V, Bower AF, Guduru PR (2013) On plastic deformation and fracture in Si films during electrochemical lithiation/delithiation cycling. J Electrochem Soc 160(10):A1885

    Google Scholar 

  160. Pharr M, Suo Z, Vlassak JJ (2014) Variation of stress with charging rate due to strain-rate sensitivity of silicon electrodes of Li-ion batteries. J Power Sources 270:569

    Google Scholar 

  161. Pharr M, Suo Z, Vlassak JJ (2013) Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. Nano Lett 13(11):5570

    Google Scholar 

  162. Sethuraman VA, Nguyen A, Chon MJ, Nadimpalli SP, Wang H, Abraham DP, Bower AF, Shenoy VB, Guduru PR (2013) Stress evolution in composite silicon electrodes during lithiation/delithiation. J Electrochem Soc 160(4):A739

    Google Scholar 

  163. Nadimpalli SP, Sethuraman VA, Abraham DP, Bower AF, Guduru PR (2015) Stress evolution in lithium-ion composite electrodes during electrochemical cycling and resulting internal pressures on the cell casing. J Electrochem Soc 162(14):A2656

    Google Scholar 

  164. Zhang Y, Luo Y, Fincher C, McProuty S, Swenson G, Banerjee S, Pharr M (2019) In-situ measurements of stress evolution in composite sulfur cathodes. Energy Storage Mater 16:491

    Google Scholar 

  165. Zhao K, Wang WL, Gregoire J, Pharr M, Suo Z, Vlassak JJ, Kaxiras E (2011) Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: a first-principles theoretical study. Nano Lett 11(7):2962

    Google Scholar 

  166. Huang S, Zhu T (2011) Atomistic mechanisms of lithium insertion in amorphous silicon. J Power Sources 196(7):3664

    Google Scholar 

  167. Yan X, Gouissem A, Sharma P (2015) Atomistic insights into Li-ion diffusion in amorphous silicon. Mech Mater 91:306

    Google Scholar 

  168. Yan X, Gouissem A, Guduru PR, Sharma P (2017) Elucidating the atomistic mechanisms underpinning plasticity in Li-Si nanostructures. Phys Rev Mater 1(5):055401

    Google Scholar 

  169. Darbaniyan F, Yan X, Sharma P (2020) An atomistic perspective on the effect of strain rate and lithium fraction on the mechanical behavior of silicon electrodes. J Appl Mech 87(3):031011

    Google Scholar 

  170. Koerver R, Aygn I, Leichtweiß T, Dietrich C, Zhang W, Binder JO, Hartmann P, Zeier WG, Janek J (2017) Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chem Mater 29(13):5574

    Google Scholar 

  171. Zhang W, Schröder D, Arlt T, Manke I, Koerver R, Pinedo R, Weber DA, Sann J, Zeier WG, Janek J (2017) (Electro) chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries. J Mater Chem A 5(20):9929

    Google Scholar 

  172. Bucci G, Swamy T, Bishop S, Sheldon BW, Chiang YM, Carter WC (2017) The effect of stress on battery-electrode capacity. J Electrochem Soc 164(4):A645

    Google Scholar 

  173. Wan TH, Ciucci F (2020) Electro-chemo-mechanical modeling of solid-state batteries. Electrochim Acta 331:135355

    Google Scholar 

  174. Garcia R, Chiang Y, Carter W, Limthongkul P, Bishop C (2005) Microstructural modeling and design of rechargeable lithium-ion batterie. J Electrochem Soc 152(1):A255

    Google Scholar 

  175. Xu R, Yang Y, Yin F, Liu P, Cloetens P, Liu Y, Lin F, Zhao K (2019) Heterogeneous damage in Li-ion batteries: experimental analysis and theoretical modeling. J Mech Phys Solids 129:160

    MathSciNet  Google Scholar 

  176. Renganathan S, Sikha G, Santhanagopalan S, White R (2010) Theoretical analysis of stresses in a lithium ion cel. J Electrochem Soc 157(2):A155

    Google Scholar 

  177. Christensen J (2010) Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J Electrochem Soc 157(3):A366

    Google Scholar 

  178. Ferguson T, Bazant M (2012) Nonequilibrium thermodynamics of porous electrodes. J Electrochem Soc 159(12):A1967

    Google Scholar 

  179. Purkayastha R, McMeeking R (2012) A linearized model for lithium ion batteries and maps for their performance and failure. J Appl Mech 79(3):031021

    Google Scholar 

  180. Hofmann T, Westhoff D, Feinauer J, Andrä H, Zausch J, Schmidt V, Müller R (2020) Electro-chemo-mechanical simulation for lithium ion batteries across the scales. Int J Solids Struct 184:24

    Google Scholar 

  181. Yu HC, Taha D, Thompson T, Taylor NJ, Drews A, Sakamoto J, Thornton K (2019) Deformation and stresses in solid-state composite battery cathodes. J Power Sources 440:227116

    Google Scholar 

  182. Bucci G, Swamy T, Chiang YM, Carter WC (2017) Modeling of internal mechanical failure of all-solid-state batteries during electrochemical cycling, and implications for battery design. J Mater Chem A 5(36):19422

    Google Scholar 

  183. Bucci G, Talamini B, Balakrishna A, Chiang Y, Carter W (2018) Mechanical instability of electrode-electrolyte interfaces in solid-state batteries. Phys Rev Mater 2(10):105407

    Google Scholar 

  184. Mykhaylov M, Ganser M, Klinsmann M, Hildebrand F, Guz I, McMeeking R (2019) An elementary 1-dimensional model for a solid state lithium-ion battery with a single ion conductor electrolyte and a lithium metal negative electrode. J Mech Phys Solids 123:207

    MathSciNet  Google Scholar 

  185. Bielefeld A, Weber DA, Janek J (2018) Microstructural modeling of composite cathodes for all-solid-state batteries. J Phys Chem C 123(3):1626

    Google Scholar 

  186. Bucci G, Swamy T, Chiang YM, Carter WC (2017) Random walk analysis of the effect of mechanical degradation on all-solid-state battery power. J Electrochem Soc 164(12):A2660

    Google Scholar 

  187. Al-Siraj M, Stein P, Xu BX (2020) The effect of morphology changes and mechanical stresses on the effective diffusivity of solid electrolyte for lithium ion batteries. J Electrochem Soc 167(2):020535

    Google Scholar 

  188. Bhandakkar T, Gao H (2010) Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: Implications on the critical size for flaw tolerant battery electrodes. Int J Solids Struct 47(10):1424

    MATH  Google Scholar 

  189. Bhandakkar T, Gao H (2011) Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses. Int J Solids Struct 48(16–17):2304

    Google Scholar 

  190. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83(10):1273

    MathSciNet  MATH  Google Scholar 

  191. Borden M, Verhoosel C, Scott M, Hughes R, Landis C (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217:77

    MathSciNet  MATH  Google Scholar 

  192. Miehe C, Welschinger F, Hofacker M (2010) A phase field model of electromechanical fracture. J Mech Phys Solids 58(10):1716

    MathSciNet  MATH  Google Scholar 

  193. Klinsmann M, Rosato D, Kamlah M, McMeeking R (2016) Modeling crack growth during Li insertion in storage particles using a fracture phase field approach. J Mech Phys Solids 92:313–344

    MATH  Google Scholar 

  194. Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2016) Modeling crack growth during Li extraction in storage particles using a fracture phase field approach. J Electrochem Soc 163(2):A102

    Google Scholar 

  195. Klinsmann M, Rosato D, Kamlah M, McMeeking RM (2016) Modeling crack growth during Li extraction and insertion within the second half cycle. J Power Sources 331:32

    Google Scholar 

  196. Hao F, Mukherjee PP (2018) Mesoscale analysis of the electrolyte-electrode interface in all-solid-state Li-ion batteries. J Electrochem Soc 165:A1857

    Google Scholar 

Download references

Acknowledgements

C.V.D.L. acknowledges funding from the National Science Foundation under Award No. CMMI-1825132.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio V. Di Leo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In honor of Professor J. N. Reddy for his 75th Birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bistri, D., Afshar, A. & Di Leo, C.V. Modeling the chemo-mechanical behavior of all-solid-state batteries: a review.. Meccanica 56, 1523–1554 (2021). https://doi.org/10.1007/s11012-020-01209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-020-01209-y

Keywords

Navigation