Skip to main content

Advertisement

Log in

Sensitivity study of momentum and turbulence models for subcooled boiling phenomena simulation

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This sensitivity analysis of the momentum and turbulence equations uses the Eulerian two-phase approach and intends to achieve a validated modeling for subcooled boiling flows. The studied regime is relevant to many industry applications and to the critical heat flux phenomenon, an important process for design and safety analyses of water-cooled nuclear power plants. Ascending water flows in heated circular pipes are modeled under subcooled boiling condition and applying a combination of computational multi-fluid dynamics (CMFD) models, each one for the estimation of specific terms of the governing equations. Turbulence closure, drag, lift, turbulent interaction, turbulent dispersion, wall lubrication and interfacial area models are investigated through variations around a reference model set defined based on the literature review, changing each model one at a time to study their impacts on the simulation results. Key parameters, such as void fraction and temperature profiles, are chosen for the evaluation of the results. Despite the difficulty of tracking the contributions of simultaneously applied models, the Legendre–Magnaudet lift force and the Burns et al. turbulent dispersion force models show good agreement with the experimental data of a flow at 4.5 MPa used for the quality verification of the simulations. These models are also applied for flows with pressures ranging from 1.5 to 15 MPa, and they lead to promising results. This study gives interesting insights on the influence of the distinct models composing momentum and turbulence calculations, contributing to the validation effort of the CMFD approach for subcooled boiling flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A :

Area

A b :

Area covered with nucleate bubbles

A i :

Interphase interfacial area

C :

Reynolds stress convection term

C D :

Drag coefficient

Cke, Ctd :

Turbulence interaction model constants

C l :

Lift coefficient

c p :

Specific heat at constant pressure

C p :

Isobaric heat capacity

C wi :

Wall lubrication model i-th constant

C wl :

Wall lubrication coefficient

C μ :

Turbulence model coefficient

D :

Diameter

D L :

Reynolds stress molecular diffusion term

d p :

Droplets/particles diameter

\(\varvec{D}_{\text{pq}}\) :

Fluid-particulate dispersion tensor

D T :

Reynolds stress turbulent diffusion term

D t,pq :

Fluid-particulate dispersion scalar

D w :

Bubble departure diameter

Eo:

Eötvös number

f :

Drag function

F :

Reynolds stress system rotation term

f b :

Bubble departure frequency

\(\varvec{F}_{\text{drag}}\) :

Drag force

\(\varvec{F}_{\text{lift}}\) :

Lift force

\(\varvec{F}_{\text{td}}\) :

Turbulent dispersion force

\(\varvec{F}_{\text{vm}}\) :

Virtual mass force

\(\varvec{F}_{\text{wl}}\) :

Wall lubrication force

g :

Gravity magnitude

\(\varvec{g}\) :

Gravity vector

G :

Reynolds stress buoyance production term

h :

Volumetric heat transfer coefficient

\(\hat{h}\) :

Specific enthalpy

h c :

Single-phase heat transfer coefficient

h lv :

Latent heat of evaporation

Jasub :

Subcooled Jakob number

k :

Turbulent kinetic energy

K :

Interphase momentum exchange coefficient

m :

Power law constant

\(\dot{m}\) :

Interphase volumetric mass transfer

Mo:

Morton number

\(\varvec{n}_{\text{w}}\) :

Wall normal vector

N w :

Nucleate site density

Nu:

Nusselt number

p :

Pressure

P :

Reynolds stress production term

Pr:

Prandtl number

q :

Heat flux vector

\(\dot{q}\) :

Heat flux scalar

Q :

Interphase heat exchange

Re:

Reynolds number

\(\tilde{R}\) :

Reynolds stresses

S ϕ :

Generic source term

Sr:

Non-dimensional shear rate

t :

Time

T :

Temperature

\(\varvec{V}\) :

Velocity vector

y w :

Distance to the nearest wall

α :

Void fraction

γ :

Diffusion coefficient

\(\varGamma_{\phi }\) :

Generic diffusion coefficient

κ :

Thermal conductivity

µ :

Viscosity

ν :

Kinematic viscosity

ρ :

Density

σ :

Surface tension

σ pq :

Dispersion Prandtl number

ω :

Specific dissipation rate

\(\epsilon\) :

Turbulence dissipation rate

ϕ :

Generic turbulence scalar

\(\varPhi\) :

Reynolds stress pressure–strain term

\(\overline{\overline{\tau }}\) :

Stress–strain tensor

τ p :

Particulate relaxation time

τ t,p :

Characteristic time of the induced turbulence

λ RT :

Rayleigh–Taylor instability wavelength

μ t :

Turbulent viscosity

δt:

Time scale

\(\Delta T_{\text{sub}}\) :

Fluid subcooling

\(\Delta T_{\sup }\) :

Wall superheat

c:

Convective

cap:

Capped regime

dis:

Distorted regime

dr:

Drift

e:

Effective, evaporative

ij :

i-th and j-th element

l:

Liquid phase

m:

Mixture

p:

Secondary phase, vapor phase, particle

q:

Primary phase, liquid phase, quenching

sat:

Saturation

v:

Vapor phase

vis:

Viscous regime

w:

Wall

ω :

Vorticity

References

  1. Collier JG, Thome JR (1994) Convective boiling and condensation. Clarendon press, Oxford

    Google Scholar 

  2. Tong LS, Weisman J (1996) Thermal analysis of pressurized water reactors. American Nuclear Society, Illinois

    Google Scholar 

  3. Garnier J, Manon E, Cubizolles G (2001) Local measurements on flow boiling of refrigerant 12 in a vertical tube. Multiph Sci Technol 13:1–111

    Google Scholar 

  4. Groeneveld DC, Shan JQ, Vasić AZ, Leung LKH, Durmayaz A, Yang J, Cheng SC, Tanase A (2007) The 2006 CHF look-up table. Nucl Eng Des 237(15–17):1909–1922

    Google Scholar 

  5. Weisman J, Pei BS (1983) Prediction of critical heat flux in flow boiling at low quality. Int J Heat Mass Transf 26(10):1463–1477

    Google Scholar 

  6. Celata GP, Cumo M, Mariani A, Simoncini M, Zummo G (1994) Rationalization of existing mechanistic models for the prediction of water subcooled flow boiling critical heat flux. Int J Heat Mass Transf 37:347–360

    Google Scholar 

  7. Podowski MZ, Podowski RM (2009) Mechanistic multidimensional modeling of forced convection boiling heat transfer. Science and Technology of Nuclear Installations 2009

  8. Bestion D, Anglart H, Caraghiaur D, Péturaud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas D, Moretti F, Galassi MC, Macek J, Vyskocil L, Koncar B, Hazi G (2009) Review of available data for validation of nuresim two-phase CFD software applied to CHF investigations. Science and Technology of Nuclear Installations 2009

  9. Yadigaroglu G (2014) CMFD and the critical-heat-flux grand challenge in nuclear thermal-hydraulics—a letter to the Editor of this special issue. Int J Multiph Flow 67:3–12

    Google Scholar 

  10. Li H, Vasquez SA, Punekar H, Muralikrishnan R (2011) Prediction of boiling and critical heat flux using an Eulerian multiphase boiling model. In: Proceedings of the ASME 2011 international mechanical engineering congress & exposition—IMECE2011. Denver, USA

  11. Braz Filho FA, Ribeiro GB, Caldeira AD (2016) Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model. Nucl Eng Des 308:30–37

    Google Scholar 

  12. Braz Filho FA, Ribeiro GB, Caldeira AD (2015) A verification and validation of the new implementation of subcooled flow boiling in a CFD code. In: 2015 International nuclear atlantic conference—INAC, São Paulo, Brazil

  13. Colombo M, Fairweather M (2016) Accuracy of Eulerian-Eulerian, two-fluid CFD boiling models of subcooled boiling flows. Int J Heat Mass Transf 103:28–44

    Google Scholar 

  14. Bartolomei GG, Chanturiya VM (1967) Experimental study of true void fraction when boiling subcooled water vertical tubes. Therm Eng 14:123–128

    Google Scholar 

  15. Murallidharan JS, Prasad BVSSS, Patnaik BSV, Hewitt GF, Badalassi V (2016) CFD investigation and assessment of wall heat flux partitioning model for the prediction of high pressure subcooled flow boiling. Int J Heat Mass Transf 103:211–230

    Google Scholar 

  16. Gu J, Wang Q, Wu Y, Lyu J, Li S, Yao W (2017) Modeling of subcooled boiling by extending the RPI wall boiling model to ultra-high pressure conditions. Appl Therm Eng 124:571–584

    Google Scholar 

  17. Bartolomei GG, Brantov VG, Molochnikov YS, Kharitonov YV, Solodkii VA, Batashova GN, Mikhailov VN (1982) An experimental investigation of true volumetric vapor content with subcooled boiling in tubes. Therm Eng 29(3):132–135

    Google Scholar 

  18. Prabhudharwadkar D, Lopez-De-Bertodano MA, Hibiki T, Buchanan JR (2014) Assessment of subcooled boiling wall boundary correlations for two-fluid model CFD. Int J Heat Mass Transf 79:602–617

    Google Scholar 

  19. Zhang X, Yu T, Cong T, Peng M (2018) Effects of interaction models on upward subcooled boiling flow in annulus. Prog Nucl Energy 105:61–75

    Google Scholar 

  20. Chu IC, Lee SJ, Youn YJ, Park JK, Choi HS, Euh DJ, Song CH (2017) Experimental evaluation of local bubble parameters of subcooled boiling flow in a pressurized vertical annulus channel. Nucl Eng Des 312:172–183

    Google Scholar 

  21. Ishii M, Hibiki T (2011) Thermo-fluid dynamics of two-phase flow. Springer, New York

    MATH  Google Scholar 

  22. ANSYS (2013) ANSYS fluent theory guide—Release 15.0. ANSYS, Inc., Southpointe

  23. Schiller L, Naumann Z (1935) A drag coefficient correlation. Z Ver Deutsch Ing 77:318–323

    Google Scholar 

  24. Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55(2):193–208

    MATH  Google Scholar 

  25. Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New York

    Google Scholar 

  26. Takamasa T, Tomiyama A (1999) Three-dimensional gas-liquid two-phase bubbly flow in a C-shaped tube. In: 9th international topical meeting on nuclear reactor thermal hydraulics (NURETH-9). San Francisco, USA

  27. Ishii M (1979) Two-fluid model for two-phase flow. In: 2nd international workshop on two-phase flow fundamentals. Troy, USA

  28. Kolev NI (2005) Multiphase flow dynamics 2: thermal and mechanical interactions. Springer, Berlin

    MATH  Google Scholar 

  29. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400

    MATH  Google Scholar 

  30. Saffman PG (1968) Corrigendum to “The lift on a small sphere in a slow shear flow”. J Fluid Mech 31:624

    Google Scholar 

  31. Mei R, Klausner JF (1994) Shear lift force on spherical bubbles. Int J Heat Fluid Flow 15(1):62–65

    Google Scholar 

  32. Tomiyama A (1998) Struggle with computational bubble dynamics. In: 3rd international conference on multiphase flow. Lyon, France

  33. Frank T, Shi JM, Burns AD (2004) Validation of Eulerian multiphase flow models for nuclear safety applications. In: 3rd international symposium on two-phase flow modeling and experimentation, Pisa, Italy

  34. Legendre D, Magnaudet J (1998) The lift force on a spherical bubble in a viscous linear shear flow. J Fluid Mech 368:81–126

    MathSciNet  MATH  Google Scholar 

  35. Moraga FJ, Bonetto RT, Lahey RT (1999) Lateral forces on spheres in turbulent uniform shear flow. Int J Multiph Flow 25:1321–1372

    MATH  Google Scholar 

  36. Antal SP, Lahey RT, Flaherty JE (1991) Analysis of phase distribution in fully developed laminar bubbly two-phase flow. Int J Multiph Flow 17(5):635–652

    MATH  Google Scholar 

  37. Hosokawa S, Tomiyama A, Misaki S, Hamada T (2002) Lateral migration of single bubbles due to the presence of wall. In: ASME 2002 joint U.S.-European fluids engineering division conference, Montreal, Canada

  38. Frank T (2005) Advances in computational fluid dynamics (CFD) of 3-dimensional gas-liquid multiphase flows. In: NAFEMS seminar: simulation of complex flows (CFD)-applications and trends, Wiesbaden, Germany

  39. Simonin O, Viollet PL (1990) Modeling of turbulent two-phase jets loaded with discrete particles. Phenomena Multiph Flows 1:259–269

    Google Scholar 

  40. Burns ADB, Frank T, Hamill I, Shi JM (2004) The favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. In: 5th international conference on multiphase flow—ICMF-2004, Yokohama, Japan

  41. Lopez de Bertodano M (1991) Turbulent bubbly flow in a triangular duct. Ph.D. thesis, Rensselaer Polytechnic Institute, Troy

  42. Sokolichen A, Eigenberger G, Lapin A (2004) Simulation of buoyancy driver bubbly flow: established simplifications and open questions. AIChE J 50(1):24–45

    Google Scholar 

  43. Anglart H, Nylund O, Kurul N, Podowski MZ (1997) CFD prediction of flow and phase distribution in fuel assemblies with spacers. Nucl Eng Des 177(1–3):215–228

    Google Scholar 

  44. Ranz WE, Marshall WR Jr (1952) Vaporation from drops, part I. Chem Eng Prog 48(3):141–146

    Google Scholar 

  45. Lavieville J, Quemerais E, Mimouni S, Boucker M, Mechitoua N (2005) NEPTUNE CFD V1.0 theory manual, EDF

  46. Kurul N, Podowski MZ (1991) On the modeling of multidimensional effects in boiling channels. In: Proceedings of the 27th National heat transfer conference. Minneapolis, USA

  47. Del Valle VH, Kenning DBR (1985) Subcooled flow boiling at high heat flux. Int J Heat Mass Transf 28(10):1907–1920

    Google Scholar 

  48. Lemmert M, Chawla LM (1977) Influence of flow velocity on surface boiling heat transfer coefficient. Heat Transf Boil 237:247

    Google Scholar 

  49. Cole R (1960) A photographic study of pool boiling in the region of the critical heat flux. AIChE J 6:533–542

    Google Scholar 

  50. Tolubinski VI, Kostanchuk DM (1970) Vapor bubbles growth rate and heat transfer intensity at subcooled water boiling. In: 4th international heat transfer conference, Paris, France

  51. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  52. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3(2):269–289

    MATH  Google Scholar 

  53. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence I basic theory. J Sci Comput 1(1):1–51

    MathSciNet  MATH  Google Scholar 

  54. Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new k − ε eddy-viscosity model for high reynolds number turbulent flows—model development and validation. Computers Fluids 24(3):227–238

    MATH  Google Scholar 

  55. Wilcox DC (1998) Turbulence modeling for CFD. DCW Industries Inc, La Canada

    Google Scholar 

  56. Menter FR (1993) Zonal two equation k − ω turbulence models for aerodynamic flows. In: 23rd fluid dynamics, plasmadynamics, and lasers conference. Orlando, USA

  57. Gibson MM, Launder BE (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech 86:491–511

    MATH  Google Scholar 

  58. Speziale CG, Sarkar S, Gatski TB (1991) Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach. J Fluid Mech 227:245–272

    MATH  Google Scholar 

  59. Troshko AA, Hassan YA (2001) A two-equation turbulence model of turbulent bubbly flow. Int J Multiph Flow 27(11):1965–2000

    MATH  Google Scholar 

  60. Sato Y, Sekoguchi K (1972) Liquid velocity distribution in two-phase bubbly flow. Int J Multiph Flow 2:79

    MATH  Google Scholar 

  61. Unal HC (1976) Maximum bubble diameter, maximum bubble growth time and bubble growth rate during subcooled nucleate flow boiling of water up To 17.7 MN/m2. Int J Heat Mass Transf 19:643–649

    Google Scholar 

  62. ANSYS (2009) ANSYS fluent theory guide—release 12.0. ANSYS, Inc., Southpointe

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian de Lima Curtt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Technical Editor: Francis HR Franca, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Lima Curtt, B., Braz Filho, F.A. Sensitivity study of momentum and turbulence models for subcooled boiling phenomena simulation. J Braz. Soc. Mech. Sci. Eng. 42, 435 (2020). https://doi.org/10.1007/s40430-020-02500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02500-5

Keywords

Navigation