Skip to main content
Log in

Production of Alpha-Alumina from Black Aluminum Dross Using NaOH Leaching Followed by Calcination

  • Aluminum: Recycling and Carbon / Environmental Footprint
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The aim of this work is to produce α-alumina particles from aluminum (Al) dross via leaching–precipitation–calcination processes. In the leaching test, the effects of parameters such as the temperature, NaOH concentration, and time were investigated based on the Taguchi approach. In addition, the effect of the particle size on the Al extraction rate was determined. The Al extraction rate ranged from 78.64% to 93.11% and from 78.35% to 91.99% for ground dross and as-received dross, respectively. In the precipitation test, the pH of the leachate solution was decreased using HCl to remove Al ions as Al hydroxide precipitate. The precipitate was calcined at 1000°C to 1200°C for 270 min. The morphological and polymorphic properties of the products were characterized by scanning electron microscopy, atomic force microscopy, and x-ray diffraction analysis. The experimental findings indicated that the calcination temperature and stabilization time were critical for producing α-alumina particles rather than other polymorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Yoldi, E.G. Fuentes-Ordoñez, S.A. Korili, and A. Gil, Miner. Eng. 140, 105884 (2019).

    Article  Google Scholar 

  2. E.M. Ewais and N.H. Besisa, Mater. Des. 141, 110 (2018).

    Article  Google Scholar 

  3. M.I. Castro, J.A. Robles, D.C. Hernández, J.E. Bocardo, and J.T. Torres, Ceram. Int. 35, 921 (2009).

    Article  Google Scholar 

  4. M.H.A. Aziz, M.H.D. Othman, N.A. Hashim, M.A. Rahman, J. Jaafar, S.K. Hubadillah, and Z.S. Tai, Ceram. Int. 45, 2069 (2019).

    Article  Google Scholar 

  5. H.N. Yoshimura, A.P. Abreu, A.L. Molisani, A.C. De Camargo, J.C.S. Portela, and N.E. Narita, Ceram. Int. 34, 581 (2008).

    Article  Google Scholar 

  6. P. Ramaswamy, S. Ranjit, S. Bhattacharjee, and S.A. Gomes, Mater. Today Proc. 19, 670 (2019).

    Article  Google Scholar 

  7. U. Singh, M.S. Ansari, S.P. Puttewar, and A. Agnihotri, Russ. J. Non-Ferrous Met. 57, 296 (2016).

    Article  Google Scholar 

  8. R. Saravanakumar, K. Ramachandran, L.G. Laly, P.V. Ananthapadmanabhan, and S. Yugeswaran, Waste Manag. 77, 565 (2018).

    Article  Google Scholar 

  9. A.K. Tripathy, S. Mahalik, C.K. Sarangi, B.C. Tripathy, K. Sanjay, and I.N. Bhattacharya, Miner. Eng. 137, 181 (2019).

    Article  Google Scholar 

  10. M. Mahinroosta and A. Allahverdi, J. Environ. Manag. 212, 278 (2018).

    Article  Google Scholar 

  11. L.F. How, A. Islam, M.S. Jaafar, and Y.H. Taufiq-Yap, Waste Biomass Valor. 8, 321 (2017).

    Article  Google Scholar 

  12. Q. Yang, Q. Li, G. Zhang, Q. Shi, and H. Feng, Hydrometallurgy 187, 158 (2019).

    Article  Google Scholar 

  13. T.H. Nguyen, T.T.H. Nguyen, and M.S. Lee, J. Korean Inst. Resour. Recycl. 27, 78 (2018).

    Google Scholar 

  14. B. Dash, B.R. Das, B.C. Tripathy, I.N. Bhattacharya, and S.C. Das, Hydrometallurgy 92, 48 (2008).

    Article  Google Scholar 

  15. P.E. Tsakiridis, P. Oustadakis, and S. Agatzini-Leonardou, J. Environ. Chem. Eng. 1, 23 (2013).

    Article  Google Scholar 

  16. E. David and J. Kopac, J. Hazard. Mater. 209–210, 501 (2012).

    Article  Google Scholar 

  17. A. Meshram, A. Jain, M.D. Rao, and K.K. Singh, J. Mater. Cycles Waste Manag. 21, 984 (2019).

    Article  Google Scholar 

  18. E. Elsarrag, A. Elhoweris, and Y. Alhorr, Energy Sustain. Soc. 7, 9 (2017).

    Article  Google Scholar 

  19. T.T.N. Nguyen, M.S. Lee, and T.H. Nguyen, Processes 6, 29 (2018).

    Article  Google Scholar 

  20. T.T.N. Nguyen and M.S. Lee, Korean J. Met. Mater. 57, 154 (2019).

    Article  Google Scholar 

  21. H. Guo, J. Wang, X. Zhang, F. Zheng, and P. Li, Metall. Mater. Trans. B 49, 2906 (2018).

    Article  Google Scholar 

  22. E.A. EI-Katatny, S.A. Halawy, M.A. Mohamed, and M.I. Zaki, J. Chem. Technol. Biotechnol. 75, 394 (2000).

    Article  Google Scholar 

  23. M. Mahinroosta and A. Allahverdi, Int. Nano Lett. 8, 255 (2018).

    Article  Google Scholar 

  24. B.R. Das, B. Dash, B.C. Tripathy, I.N. Bhattacharya, and S.C. Das, Miner. Eng. 20, 252 (2007).

    Article  Google Scholar 

  25. M.S.R. Sarker, M.Z. Alam, M.R. Qadir, M.A. Gafur, and M. Moniruzzaman, Int. J. Miner. Metall. Mater. 22, 429 (2015).

    Article  Google Scholar 

  26. J.M. Andersson, Linköping University, Ph.D. Thesis (2005), p. 43.

  27. T.T.N. Nguyen, S.J. Song, and M.S. Lee, J. Mater. Res. Technol. 9, 2568 (2020).

  28. M. Erdemoğlu, M. Birinci, T. Uysal, E.P. Tüzer, and T.S. Barry, J. Mater. Sci. 53, 13801 (2018).

    Article  Google Scholar 

  29. E. Taşkin, K. Yildiz, and A. Alp, Min. Metall. Explor. 26, 222 (2009).

    Google Scholar 

  30. T.C. Alex, R. Kumar, S.K. Roy, and S.P. Mehrotra, Hydrometallurgy 144, 99 (2014).

    Article  Google Scholar 

  31. M.G. Ghoniem, T.M. Sami, S.A. El-Reefy, and S.A. Mohamed, Waste Manag. Environ. 180, 29 (2014).

    Google Scholar 

  32. F. Rey-Garcia, Universidade De Santiago De Compostela, Ph.D. Thesis (2012). p. 211.

  33. M. Mahinroosta and A. Allahverdi, J. Clean. Prod. 179, 9 (2018).

    Article  Google Scholar 

  34. A. Niyompan and R. Tipakontitikul, Preparation of β″-Alumina Solid Electrolyte for Electric Car Battery (Ubon Ratchathani: Department of Physics, Faculty of Science, Ubon Ratchathani University, 2009).

    Google Scholar 

  35. W.L. Suchanek and J.M. Garcés, CrystEngComm 12, 2996 (2010).

    Article  Google Scholar 

  36. P.K. Kiyohara, H.S. Santos, A.C.V. Coelho, and P.D.S. Santos, An Acad Bras Cienc 72, 471 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Cukurova University (Project ID: FBA-2019-10123). In addition, the authors would like to thank specialists Ahmet Faruk Yazıcı and Resul Ozdemır in Abdullah Gul University Central Research Facility for SEM and AFM analyses, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Altıner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türk, M., Altıner, M., Top, S. et al. Production of Alpha-Alumina from Black Aluminum Dross Using NaOH Leaching Followed by Calcination. JOM 72, 3358–3366 (2020). https://doi.org/10.1007/s11837-020-04281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04281-7

Navigation