Skip to main content
Log in

Separation of Impurity Iron from Polysilicon by Pulsed Electric Current

  • Solidification Behavior in the Presence of External Fields
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The effect of using a pulsed electric current to remove impurity iron from molten polysilicon was investigated. Using optical microscopy observation and area statistics of iron-rich content, it was found that iron tends to accumulate at the bottom of an ingot under the action of a pulsed electric current. A new separation mechanism is proposed, based on the decreased solubility of iron in polysilicon under conditions including a pulsed electric current. Thermodynamic calculations indicate the theoretical possibility of the formation of iron-rich Si clusters. These clusters sink to the bottom of an ingot under the effect of gravity and form iron-rich precipitates with silicon, thereby achieving the iron removal. This technique provides a new method for purification of polysilicon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O. Diego, A.E. Mohamed, H.E. Ammar, and A.E. Ahmed, J. Power Sources 435, 126683 (2019).

    Article  Google Scholar 

  2. C. Wael, C. Monia, M. Hatem, and B. Philippe, Energy Rep. 4, 400 (2018).

    Article  Google Scholar 

  3. A.F. Husain, W.Z.W. Hasan, S. Shafie, M.N. Hamidon, and S.S. Pandey, Renew. Sustain. Energy Rev. 94, 779 (2018).

    Article  Google Scholar 

  4. B. Tan, Y. Liu, and C.F. Ma, Chem. Manag. 08, 178 (2017).

    Google Scholar 

  5. M. Hosenuzzaman, N.A. Rahim, J. Selvaraj, M. Hasanuzzaman, A.B.M.A. Malek, and A. Nahar, Renew. Sustain. Energy Rev. 41, 284 (2015).

    Article  Google Scholar 

  6. P. Michael, P. Stefan, H. Dimitrios, W. Roland, K. Friedrich, L. Peter, and W. Wiltraud, Engineering 3, 445 (2017).

    Article  Google Scholar 

  7. A.F. Braga, S.P. Moreira, P.R. Zampieri, J.M.G. Bacchin, and P.R. Mei, Sol. Energy Mater. Sol. Cells 92, 418 (2008).

    Article  Google Scholar 

  8. H. Chen, K. Morita, X.D. Ma, Z.Y. Chen, and Y. Wang, Sol. Energy Mater. Sol. Cells 203, 110 (2019).

    Google Scholar 

  9. C.H. Gan, M. Fang, L. Zhang, S. Qiu, J.T. Li, and D.C. Jiang, Trans. Nonferr. Met. Soc. China 26, 859 (2016).

    Article  Google Scholar 

  10. A.A. Istratov, H. Hieslmair, and E.R. Weber, Appl. Phys. A Mater. Sci. Process. 70, 489 (2000).

    Article  Google Scholar 

  11. B.G. Gribov and K.V. Zinov’ev, Inorg. Mater. 39, 653 (2003).

    Article  Google Scholar 

  12. M.A. Martorano, J.B.F. Neto, T.S. Oliveira, and T.O. Tsubaki, Metall. Mater. Trans. A 42, 1870 (2011).

    Article  Google Scholar 

  13. V. Kesavan, M. Srinivasan, and P. Ramasamy, Mater. Lett. 241, 180 (2019).

    Article  Google Scholar 

  14. P.R. Mei, S.P. Moreira, E. Cardoso, A.D.S. Côrtes, and F.C. Marques, Sol. Energy Mater. Sol. Cells 98, 233 (2012).

    Article  Google Scholar 

  15. H. Lai, L. Huang, C. Gan, P.F. Xing, J.T. Li, and X.T. Luo, Hydrometallurgy 164, 103 (2016).

    Article  Google Scholar 

  16. H.X. Lai, L.Q. Huang, C.H. Lu, M. Fang, W.H. Ma, P.F. Xing, J.T. Li, and X.T. Luo, Hydrometallurgy 156, 173 (2015).

    Article  Google Scholar 

  17. S.K. Sahu and E. Asselin, Hydrometallurgy 121, 120 (2012).

    Article  Google Scholar 

  18. X.F. Zhang and R.S. Qin, Mater. Sci. Technol. 33, 1 (2017).

    Google Scholar 

  19. X.F. Zhang and R.S. Qin, Appl. Phys. Lett. 104, 114106 (2014).

    Article  Google Scholar 

  20. X.F. Zhang and R.S. Qin, Sci. Rep. 5, 10162 (2015).

    Article  Google Scholar 

  21. X.F. Zhang and L.G. Yan, Acta Metall. Sin. 3, 56 (2020).

    Google Scholar 

  22. G.Z. Zhang, L.G. Yan, and X.F. Zhang, ISIJ Int. (2019, in press).

  23. X.L. Wang, J.D. Guo, Y.M. Wang, X.Y. Wu, and B.Q. Wang, Appl. Phys. Lett. 89, 061910 (2006).

    Article  Google Scholar 

  24. L.F. Zhang and Y.Q. Li, Solar level Polysilicon Refining Method, 1st ed. (Beijing: Metallurgical Industry Press, 2017), p. 159.

    Google Scholar 

  25. Z.Q. Xi, D.R. Yang, J. Chen, X.Q. Wang, L. Wang, D.L. Que, and H.J. Moeller, J. Semicond. 24, 11 (2003).

    Google Scholar 

  26. P.S. Ho and T. Kwok, Rep. Prog. Phys. 52, 301 (1989).

    Article  Google Scholar 

  27. E.C.C. Yeh and K.N. Tu, J. Appl. Phys. 88, 5680 (2000).

    Article  Google Scholar 

  28. J.Z. Wang, J.G. Qi, Z.F. Zhao, H.S. Guo, and T. Zhao, Trans. Nonferr. Met. Soc. China 23, 2792 (2013).

    Article  Google Scholar 

  29. R.S. Qin, H.C. Yan, G.H. He, and B.L. Zhou, J. Mater. 9, 219 (1995).

    Google Scholar 

  30. J.P. Gaspard, P.H. Lambi, C. Mouttet, and J.P. Vigneron, Philos. Mag. Part B 50, 103 (1984).

    Article  Google Scholar 

  31. T.K. Gu, J.Y. Qin, C.Y. Xu, and X.F. Bian, Phys. Rev. B. 70, 144 (2004).

    Google Scholar 

  32. H.J. Guo, Physical Chemistry of Metallurgy, 2nd ed. (Beijing: Metallurgical Industry Press, 2004), p. 45.

    Google Scholar 

  33. K. Shigeyuki and T. Kazutaka, J. Cryst. Growth 180, 323 (1997).

    Article  Google Scholar 

  34. N. Tsuyoshi, S. Hiroyuki, and O. Hiromichi, Mater. Trans. 44, 2369 (2003).

    Article  Google Scholar 

  35. H.Y. Wang, The structure evolution of Fe Si alloy and the formation of β-FeSi2 phase under the condition of far away from equilibrium. Ph.D. Thesis.

  36. X. Ma, J. Zhang, T. Wang, and T.J. Li, Rare Met. (Beijing, China) 28, 221 (2009).

    Google Scholar 

  37. C.P. Khattak, F. Schmid, and B.D. Joyce, AIP Conf. Proc. 462, 731 (1999).

    Article  Google Scholar 

  38. X.M. Li, Y.M. Dang, W.F. Li, J.X. Zhao, and Y.R. Cui, Adv. Mater. Res. 813, 7 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (U1860206, 51874023), Fundamental Research Funds for the Central Universities, Recruitment Program of Global Experts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinfang Zhang or Yabo Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Yan, L., Zhang, X. et al. Separation of Impurity Iron from Polysilicon by Pulsed Electric Current. JOM 72, 4101–4108 (2020). https://doi.org/10.1007/s11837-020-04265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04265-7

Navigation