Skip to main content
Log in

In Situ Analysis of Laser Powder Bed Fusion Using Simultaneous High-Speed Infrared and X-ray Imaging

  • In Situ Synchrotron and Neutron Characterization of Additively Manufactured Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Laser powder bed fusion is a metal additive manufacturing technique that has received significant scientific and industrial attention over the past decades. However, the quality and reproducibility of parts manufactured by this technique is still a problem. Overcoming this issue requires an understanding of multiple complex physical phenomena which occur simultaneously during the process. This work illustrates a powerful new technique which synchronizes high-speed x-ray imaging with high-speed infrared imaging to study laser powder bed fusion processes in real time. Using this technique, we demonstrate the simultaneous observation of multiple phenomena including three-dimensional melt pool visualization, vapor plume dynamics, spatter formation, thermal history, and point cooling rates. The paired observation of these dynamic phenomena is critical to understanding the fundamentals of laser powder bed fusion, and the overall impact of process parameters on print quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I. Gibson, D.W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing (London: Springer, 2010).

    Book  Google Scholar 

  2. ASTM F3792 (2012).

  3. D.D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Int. Mater. Rev. 57, 133 (2012).

    Article  Google Scholar 

  4. W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014).

    Article  Google Scholar 

  5. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu, Int. Mater. Rev. 61, 315 (2016).

    Article  Google Scholar 

  6. T.T. Wohlers and T. Caffrey, Wohlers Report 2015: 3D Printing and Additive Manufacturing Stat of the Indurstry Annual Worldwide Progress Report (Fort Collins: Wohlers Associates, 2015).

    Google Scholar 

  7. R. Cunningham, S.P. Narra, T. Ozturk, J. Beuth, and A.D. Rollett, JOM 68, 765 (2016).

    Article  Google Scholar 

  8. R. Cunningham, S.P. Narra, C. Montgomery, J. Beuth, and A.D. Rollett, JOM 69, 479 (2017).

    Article  Google Scholar 

  9. P.C. Collins, D.A. Brice, P. Samimi, I. Ghamarian, and H.L. Fraser, Annu. Rev. Mater. Res. 46, 63 (2016).

    Article  Google Scholar 

  10. P. Li, D. Warnner, A. Fatemi, and N. Phan, Int. J. Fatigue 85, 130 (2016).

    Article  Google Scholar 

  11. S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, and A.T. Clare, Mater. Des. 95, 431 (2016).

    Article  Google Scholar 

  12. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, and W.E. King, Acta Mater. 114, 33 (2016).

    Article  Google Scholar 

  13. S. Ly, A.M. Rubenchik, S.A. Khairallah, G. Guss, and M.J. Matthews, Sci. Rep. 7, 4085 (2017).

    Article  Google Scholar 

  14. U. Scipioni Bertoli, G. Guss, S. Wu, M.J. Matthews, and J.M. Schoenung, Mater. Des. 135, 385 (2017).

    Article  Google Scholar 

  15. P. Bidare, R.R.J. Maier, R.J. Beck, J.D. Shephard, and A.J. Moore, Addit. Manuf. 16, 177 (2017).

    Google Scholar 

  16. P. Bidare, I. Bitharas, R.M. Ward, M.M. Attallah, and A.J. Moore, Acta Mater. 142, 107 (2018).

    Article  Google Scholar 

  17. J. Trapp, A.M. Rubenchik, G. Guss, and M.J. Matthews, Appl. Mater. Today 9, 341 (2017).

    Article  Google Scholar 

  18. M. Pavlov, M. Doubenskaia, and I. Smurov, Phys. Proc. 5, 523 (2010).

    Article  Google Scholar 

  19. T. Furumoto, T. Ueda, M.R. Alkahari, and A. Hosokawa, CIRP Ann. 62, 223 (2013).

    Article  Google Scholar 

  20. J.C. Fox, B.M. Lane, and H. Yeung, in Thermosense Therm. Infrared Appl. XXXIX (International Society for Optics and Photonics, 2017), p. 1021407.

  21. S. Moylan, E.P. Whitenton, L. Ma, and B. Lane, Rapid Prototype J. 22, 778 (2016).

    Article  Google Scholar 

  22. C. Zhao, K. Fezzaa, R.W. Cunningham, H. Wen, F.D. Carlo, L. Chen, A.D. Rollett, and T. Sun, Sci. Rep. 7, 3602 (2017).

    Article  Google Scholar 

  23. A. Bobel, L.G. Hector, I. Chelladurai, A.K. Sachdev, T. Brown, W.A. Poling, R. Kubic, B. Gould, C. Zhao, N. Parab, A. Greco, and T. Sun, Materialia 6, 100306 (2019).

    Article  Google Scholar 

  24. Q. Guo, C. Zhao, L.I. Escano, Z. Young, L. Xiong, K. Fezzaa, W. Everhart, B. Brown, T. Sun, and L. Chen, Acta Mater. 151, 169 (2018).

    Article  Google Scholar 

  25. S.M.H. Hojjatzadeh, N.D. Parab, Q. Guo, M. Qu, L. Xiong, C. Zhao, L.I. Escano, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, Int. J. Mach. Tools Manuf. 153, 103555 (2020).

    Article  Google Scholar 

  26. Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, and L. Chen, Addit. Manuf. 28, 600 (2019).

    Google Scholar 

  27. Q. Guo, C. Zhao, M. Qu, L. Xiong, S.M.H. Hojjatzadeh, L.I. Escano, N.D. Parab, K. Fezzaa, T. Sun, and L. Chen, Addit. Manuf. 31, 100939 (2020).

    Google Scholar 

  28. C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, and P.D. Lee, Nat. Commun. 9, 1355 (2018).

    Article  Google Scholar 

  29. A.A. Martin, N.P. Calta, J.A. Hammons, S.A. Khairallah, M.H. Nielsen, R.M. Shuttlesworth, N. Sinclair, M.J. Matthews, J.R. Jeffries, T.M. Willey, and J.R.I. Lee, Mater. Today Adv. 1, 100002 (2019).

    Article  Google Scholar 

  30. S.J. Wolff, H. Wu, N. Parab, C. Zhao, K.F. Ehmann, T. Sun, and J. Cao, Sci. Rep. 9, 962 (2019).

    Article  Google Scholar 

  31. N.D. Parab, C. Zhao, R. Cunningham, L.I. Escano, K. Fezzaa, W. Everhart, A.D. Rollett, L. Chen, and T. Sun, J. Synchrotron Radiat. 25, 1467 (2018).

    Article  Google Scholar 

  32. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett, Science 363, 849 (2019).

    Article  Google Scholar 

  33. M. Hudspeth, T. Sun, N. Parab, Z. Guo, K. Fezzaa, S. Luo, and W. Chen, J. Synchrotron Radiat. 22, 49 (2015).

    Article  Google Scholar 

  34. D. Fan, L. Lu, B. Li, M.L. Qi, E. JC, F. Zhao, T. Sun, K. Fezzaa, W. Chen, and S.N. Luo, Rev. Sci. Instrum. 85, 113902 (2014).

    Article  Google Scholar 

  35. T. Sun and K. Fezzaa, J. Synchrotron Radiat. 23, 1046 (2016).

    Article  Google Scholar 

  36. K. Fezzaa and Y. Wang, Phys. Rev. Lett. 100, (2008).

  37. N.H. Paulson, B. Gould, S.J. Wolff, M. Stan, and A.C. Greco, Addit. Manuf. 34, 101213 (2020).

    Google Scholar 

  38. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Acta Mater. 108, 36 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alex Deriy at the APS for their assistance in the beamline experiments. This work is partially supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Gould.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 73541 kb)

Supplementary material 2 (MP4 19496 kb)

Supplementary material 3 (MP4 65544 kb)

Supplementary material 4 (MP4 14603 kb)

Supplementary material 5 (MP4 29359 kb)

Supplementary material 6 (MP4 50169 kb)

Supplementary material 7 (MP4 13767 kb)

Supplementary material 8 (MP4 28336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gould, B., Wolff, S., Parab, N. et al. In Situ Analysis of Laser Powder Bed Fusion Using Simultaneous High-Speed Infrared and X-ray Imaging. JOM 73, 201–211 (2021). https://doi.org/10.1007/s11837-020-04291-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04291-5

Navigation