Skip to main content
Log in

Long Carbon Fibers Reinforced Rigid Polyurethane Composites: An Investigation In Strength and Toughness

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

High-performance polyurethane materials are attracting more and more attention. In this work, a cooperative improvement of strength and toughness of rigid polyurethane (RPU) composites was achieved. 1.0 wt% long carbon fibers (LCFs) reinforced RPU composites were prepared and the effects of fiber oxidation treatment were studied. The results indicated that the surface roughness and wettability of LCFs were both increased, which could provide better physical bonding between LCFs and RPU matrix. Moreover, the increasing -OH groups on the fiber surface would react with RPU to form chemical bond. With the strengthened physical and chemical bonds, the interface of LCFs/RPU composites has been effectively improved. The mechanical properties showed that compared with pure RPU, the tensile strength, tensile modulus, bending strength, bending modulus, and impact strength of oxidized LCFs/RPU composites were increased by 171.1 %, 814.3 %, 29.1 %, 125.8 % and 110.1 %, respectively. Interlaminar shear strength (ILSS) was also increased by 65.1 %. Dynamic thermomechanical analysis (DMA) and scanning electron microscope (SEM) indicated the positive effects of the oxidation treatment on the interfacial bonding between LCFs and RPU matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Kim and J. R. Youn, Polym-Plast. Technol., 39, 163 (2000).

    Article  CAS  Google Scholar 

  2. Z. G. Yang, B. Zhao, S. L. Qin, Z. F. Hu, Z. K. Jin, and J. H. Wang, J. Appl. Polym. Sci., 92, 1493 (2004).

    Article  CAS  Google Scholar 

  3. N. N. P. N. Pauzi, R. A. Majid, M. H. Dzulkifli, and M. Y. Yahy, Compos. Part B-Eng., 67, 521 (2014).

    Article  Google Scholar 

  4. W. Xu, G. J. Wang, and X. R. Zheng, Polym. Degrad. Stabil., 111, 142 (2015).

    Article  CAS  Google Scholar 

  5. N. C. Hilyard and A. Cunningham, “Low Density Cellular Plastics Physical Basis of Behavior”, p.135, New York: Chapman and Hall, 1994.

    Book  Google Scholar 

  6. S. Jiang, Q. F. Li, Y. H. Zhao, J. W. Wang, and M. Q. Kang, Compos. Sci. Technol., 110, 87 (2015).

    Article  CAS  Google Scholar 

  7. Y. Lee and R. S. Porter, Polym. Eng. Sci., 26, 633 (1986).

    Article  CAS  Google Scholar 

  8. Y. Liu and S. Kumar, Polym. Rev., 52, 234 (2012).

    Article  CAS  Google Scholar 

  9. N. G. Karsli and A. Aytac, Compos. Part B: Eng., 51, 270 (2013).

    Article  CAS  Google Scholar 

  10. Y. Zhang, Y. Z. Zhang, Y. Liu, X. L. Wang, and B. Yang, Appl. Surf. Sci., 382, 144 (2016).

    Article  CAS  Google Scholar 

  11. S. Jiang, Q. F. Li, Y. H. Zhao, J. W. Wang, and M. Q. Kang, Compos. Sci. Technol., 110, 87 (2015).

    Article  CAS  Google Scholar 

  12. H. J. Zo, S. H. Joo, T. Kim, P. S. Seo, J. H. Kim, and J. S. Park, Fiber. Polym, 15, 1071 (2014).

    Article  CAS  Google Scholar 

  13. R. L. Ma, W. W. Li, M. M. Huang, X. J. Liu, and M. Feng, Polym. Test, 71, 156 (2018).

    Article  CAS  Google Scholar 

  14. M. Zhao, L. Meng, L. Ma, G. Wu, Y. Wang, F. Xie, and Y. Huang, RSC Adv., 6, 29654 (2016).

    Article  CAS  Google Scholar 

  15. N. Zheng, Y. Huang, H. Y. Liu, J. Gao, and Y. W. Mai, Compos. Sci. Technol., 140, 8 (2017).

    Article  CAS  Google Scholar 

  16. L. Zhang, H. Jiao, H. Jiu, J. Chang, S. Zhang, and Y. Zhao, Compos. Part A-Appl. S., 90, 286 (2016).

    Article  CAS  Google Scholar 

  17. M. N. Salimi, M. T. Merajin, and M. K. B. Givi, J. Compos. Mater., 51, 745 (2017).

    Article  Google Scholar 

  18. Y. J. Yan, H. Xia, Y. P. Qiu, Z. Z. Xu, and Q. Q. Ni, RSC Adv., 9, 9401 (2019).

    Article  CAS  Google Scholar 

  19. S. Shrestha, B. K. Shrestha J. I. Kim, S. W. Ko, C. H. Park, and C. S. Kim, Carbon, 136, 430 (2018).

    Article  CAS  Google Scholar 

  20. S. A. Abdullah, A. Iqbal, and L. Frormann, J. Appl. Polym. Sci., 110, 196 (2008).

    Article  CAS  Google Scholar 

  21. S. G. Kuzak and A. Shanmugam, J. Appl. Polym. Sci., 73, 649 (1999).

    Article  CAS  Google Scholar 

  22. Ornaghi, Jr. H. L. Bolner, A. S. Fiorio, R. Zattera, and A. Jose, J. Appl. Polym. Sci., 118, 887 (2010).

    CAS  Google Scholar 

  23. S. Mohanty, S. K. Verma, and S. K. Nayak, Compos. Sci. Technol., 66, 538 (2006).

    Article  CAS  Google Scholar 

  24. N. Hameed, P. A. Sreekumar, B. Francis, W. M. Yang, and S. Thomas, Compos. Part A: Appl. Sci. Manuf., 38, 2422 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Zhejiang Province, China [No. LY20E030002], Natural Science Foundation of Ningbo, China [No. 2019A610134].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Yang, J. & Liu, X. Long Carbon Fibers Reinforced Rigid Polyurethane Composites: An Investigation In Strength and Toughness. Fibers Polym 21, 1605–1610 (2020). https://doi.org/10.1007/s12221-020-1182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1182-0

Keywords

Navigation