Skip to main content
Log in

Effect of Stacking Sequence on Mechanical Properties and Moisture Absorption Characteristic of Hybrid PALF/Glass Fiber Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Applications of natural reinforcements such as pineapple leaf fiber (PALF) have increased considerably due to unlimited resources from the nature. Hybridization of fiber reinforced composites promoted various advantages such as low weight, low cost, biodegradable and eco-friendly products having unique properties. This study aims to assess the effect of stacking sequences on the moisture absorption characteristics and mechanical properties of hybrid PALF (P) and glass fiber (G) reinforced polymer composites. The accelerated moisture absorption test as well as flexural and tensile experiments were conducted on the pure PALF and the hybrid PALF/glass fiber reinforced epoxy composites with three different stacking sequences of PGPG, GPPG and PGGP. The fractured surface of the specimens was analyzed using a scanning electron microscope (SEM). The Fickian diffusion theory was applied to characterize the composite moisture absorption behavior. Results indicated that the pure PALF laminated composite absorbs a higher percentage of moisture than the hybrid composites, which causes the higher degradation of the mechanical properties of pure PALF composite compared to the hybrid composites. The stacking sequences of the PALF and the glass fiber have significant influence on the diffusion rate of water into the composites. The results of the tension and the flexural experiments showed that the hybrid composites have superior mechanical properties compared to the non-hybrid fiber composite with the percentage increases of the flexural and the tensile strength up to 119 % and 153 %, respectively. The hybrid composite with alternate stacking configuration, i.e. PGPG, revealed the highest flexural and tensile strengths of 170.13 MPa and 119.21 MPa, respectively. In addition, the SEM observation displayed better interfacial bonding between the fiber and the matrix in the hybrid composite with PGPG stacking sequence compared to the other specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Meredith, R. Ebsworth, S. R. Coles, B. M. Wood, and K. Kirwan, Compos. Sci. Technol., 72, 211 (2012).

    CAS  Google Scholar 

  2. J. Holbery and D. Houston, JOM-J. Min. Met. Mat. S., 58, 80 (2006).

    CAS  Google Scholar 

  3. J. Njuguna, P. Wambua, K. Pielichowski, and K. Kayvantash in “Cellulose Fibers: Bio- and Nano-Polymer Composites: Green Chemistry and Technology”(S. Kalia, B. S. Kaith, and I. Kaur Eds.), p.661, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

  4. L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, Int. J. Polym. Sci., 2015, 15 (2015).

    Google Scholar 

  5. M. Nurul Fazita, K. Jayaraman, D. Bhattacharyya, M. Mohamad Haafiz, C. K. Saurabh, M. H. Hussin, and H. P. S. Abdul Khalil, Materials, 9, 435 (2016).

    PubMed Central  Google Scholar 

  6. C. Fragassa in “Advances in Applications of Industrial Biomaterials”(E. Pellicer, D. Nikolic, J. Sort, M. Baró, F. Zivic, N. Grujovic, R. Grujic, and S. Pelemis Eds.), p.21, Springer International Publishing, Cham, 2017.

  7. K. G. Girisha, K. C. Anil, and Akash, IMPACT: Int. J Res. Eng. Technol., 2, 245 (2014).

    Google Scholar 

  8. M. R. Sanjay, G. R. Arpitha, and B. Yogesha, Mater. Today-Proc., 2, 2959 (2015).

    Google Scholar 

  9. M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, J. Clean. Prod., 172, 566 (2018).

    CAS  Google Scholar 

  10. J. Andersons, E. Spärnins, R. Joffe, and L. Wallström, Compos. Sci. Technol., 65, 693 (2005).

    CAS  Google Scholar 

  11. B. Vijaya Ramnath, V. M. Manickavasagam, C. Elanchezhian, C. Vinodh Krishna, S. Karthik, and K. Saravanan, Mater. Des., 60, 643 (2014).

    Google Scholar 

  12. L. U. Devi, S. S. Bhagawan, and S. Thomas, J. Appl. Polym. Sci., 64, 1739 (1997).

    CAS  Google Scholar 

  13. B. M. Cherian, A. L. Leäo, S. F. de Souza, L. M. M. Costa, G. M. de Olyveira, M. Kottaisamy, E. R. Nagarajan, and S. Thomas, Carbohydr. Polym., 86, 1790 (2011).

    CAS  Google Scholar 

  14. S. Jose, R. Salim, and L. Ammayappan, J. Nat. Fibers, 13, 362 (2016).

    Google Scholar 

  15. S. Banika, D. Nag, and S. Debnath, Indian J. Fibre Text. Res., 36, 172 (2011).

    Google Scholar 

  16. S. Mishra, A. K. Mohanty, L. T. Drzal, M. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 289, 955 (2004).

    CAS  Google Scholar 

  17. M. Asim, K. Abdan, M. Jawaid, M. Nasir, Z. Dashtizadeh, M. R. Ishak, and M. E. Hoque, Int. J. Polym. Sci., 2015, 16 (2015).

    Google Scholar 

  18. S. Kaewpirom and C. Worrarat, Fiber. Polym., 15, 1469 (2014).

    CAS  Google Scholar 

  19. M. Asim, M. Jawaid, K. Abdan, and M. R. Ishak, Fiber. Polym., 18, 940 (2017).

    CAS  Google Scholar 

  20. H. P. S. A. Khalil, M. Jawaid, and A. A. Bakar, BioResources, 6, 1043 (2011).

    Google Scholar 

  21. R. Yahaya, S. M. Sapuan, M. Jawaid, Z. Leman, and E. S. Zainudin, Mater. Des., 67, 173 (2015).

    CAS  Google Scholar 

  22. M. Jawaid, H. P. S. Abdul Khalil, and A. Abu Bakar, Mater. Sci. Eng. A-Struct., 527, 7944 (2010).

    Google Scholar 

  23. T. Czigány, Compos. Sci. Technol., 66, 3210 (2006).

    Google Scholar 

  24. M. Ramesh, T. S. A. Atreya, U. S. Aswin, H. Eashwar, and C. Deepa, ProcediaEngineer., 97, 563 (2014).

    CAS  Google Scholar 

  25. M. Ramesh, K. Palanikumar, and K. H. Reddy, Compos. Part B-Eng., 48, 1 (2013).

    CAS  Google Scholar 

  26. S. Sulaiman, M. Sayuti, and R. Samin, J. Mater. Process. Tech., 201, 731 (2008).

    CAS  Google Scholar 

  27. R. M. V. G. K. Rao, N. Balasubramanian, and M. Chanda, J. Reinf. Plast. Comp., 3, 232 (1984).

    CAS  Google Scholar 

  28. R. M. V. G. K. Rao, M. Chanda, and N. Balasubramanian, J. Reinf. Plast. Compos., 3, 246 (1984).

    CAS  Google Scholar 

  29. K. Wong, “Moisture Absorption Characteristics and Effects on Mechanical Behaviour of Carbon/epoxy Composite: Application to Bonded Patch Repairs of Composite Structures”, Université de Bourgogne, France, 2013.

    Google Scholar 

  30. A. Stamboulis, C. A. Baillie, and T. Peijs, Compos. Part A-Appl. S, 32, 1105 (2001).

    Google Scholar 

  31. M. S. Sreekala J. George, M. G. Kumaran, and S. Thomas, Compos. Sci. Technol., 62, 339 (2002).

    CAS  Google Scholar 

  32. M. M. Thwe and K. Liao, Compos. Part A-Appl. S., 33, 43 (2002).

    Google Scholar 

  33. H. N. Dhakal, Z. Y. Zhang, and M. O. W. Richardson, Compos. Sci. Technol., 67, 1674 (2007).

    CAS  Google Scholar 

  34. V. C. A. Cruz, M. M. S. Nóbrega, W. P. d. Silva, L. H. de Carvalho, and A. G. B. de Lima, Materialwiss. Werkst., 42, 979 (2011).

    CAS  Google Scholar 

  35. N. Venkateshwaran and A. ElayaPerumal, Fiber. Polym., 13, 907 (2012).

    CAS  Google Scholar 

  36. H. M. Akil, C. Santulli, F. Sarasini, J. Tirilla, and T. Valente, Compos. Sci. Technol., 94, 62 (2014).

    CAS  Google Scholar 

  37. A. Pandian, M. Vairavan, W. J. Jebbas Thangaiah, and M. Uthayakumar, J. Compos., 2014, 8 (2014).

    Google Scholar 

  38. V. Chaudhary, P. K. Bajpai, and S. Maheshwari, J. Nat. Fibers, 7, 84 (2020).

    Google Scholar 

  39. C. Mei, X. Sun, M. Wan, Q. Wu, S.-J. Chun, and S. Lee, Waste Biomass Valori., 9, 2237 (2018).

    CAS  Google Scholar 

  40. M. Habibi, L. Laperrière, and H. M. Hassanabadi, Compos. Part B-Eng., 166, 31 (2019).

    CAS  Google Scholar 

  41. R. Vinayagamoorthy, J. Nat. Fibers, 16, 163 (2019).

    CAS  Google Scholar 

  42. F. Cheng, Y. Hu, and J. Yuan, Fiber. Polym., 15, 1715 (2014).

    CAS  Google Scholar 

  43. M. A. Abd El-baky, Fiber. Polym., 18, 2417 (2017).

    CAS  Google Scholar 

  44. M. Latif, C. N. Kumar, M. N. Prabhakar, and J.-I. Song, Fiber. Polym., 20, 413 (2019).

    CAS  Google Scholar 

  45. A. Ashori and S. Sheshmani, Bioresource Technol., 101, 4717 (2010).

    CAS  Google Scholar 

  46. ASTM International, “Standard Test Methods for Void Content of Reinforced Plastics, Astm D 2734–94”, 8(Reapproved), 2003.

  47. H. J. Kim and D. W. Seo, Int. J. Fatigue, 28, 1307 (2006).

    CAS  Google Scholar 

  48. V. Vilay, M. Mariatti, R. Mat Taib, and M. Todo, Compos. Sci. Technol., 68, 631 (2008).

    CAS  Google Scholar 

  49. J. L. Thomason, Composites, 26, 487 (1995).

    CAS  Google Scholar 

  50. M. Mehdikhani, L. Gorbatikh, I. Verpoest, and S. V. Lomov, J. Compos. Mater., 53, 1579 (2018).

    Google Scholar 

  51. S. Pavlidou and C. D. Papaspyrides, Compos. Part A-Appl. S., 34, 1117 (2003).

    Google Scholar 

  52. C. J. Tsenoglou, S. Pavlidou, and C. D. Papaspyrides, Compos. Sci. Technol., 66, 2855 (2006).

    CAS  Google Scholar 

  53. B. Yang, J. Zhang, L. Zhou, M. Lu, W. Liang, and Z. Wang, Compos. Part B-Eng., 82, 84 (2015).

    CAS  Google Scholar 

  54. N. Sung, J. Polym. Sci. A1, 29, 1835 (1991).

    Google Scholar 

  55. A. Pegoretti, E. Fabbri, C. Migliaresi, and F. Pilati, Polym. Int., 53, 1290 (2004).

    CAS  Google Scholar 

  56. J.-E. Lundgren and P. Gudmundson, Compos. Sci. Technol., 59, 1983 (1999).

    CAS  Google Scholar 

  57. I. A. Ashcroft and A. D. Crocombe in “Design of Adhesive Joints Under Humid Conditions”(L. F. M. da Silva and C. Sato Eds.), p.123, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

  58. Y. Li, R. Li, L. Huang, K. Wang, and X. Huang, Mater. Des., 99, 477 (2016).

    CAS  Google Scholar 

  59. Y. J. Weitsman (Ed.), “Fluid Effects in Polymers and Polymeric Composites”, p.69, Springer US, Boston, MA, 2012.

    Google Scholar 

  60. Y. Weitsman, Compressive Compos. Mater., 2, 369 (1995).

    Google Scholar 

  61. Y. Joliff, W. Rekik, L. Belec, and J. F. Chailan, Compos. Struct., 108, 876 (2014).

    Google Scholar 

  62. S. Joseph, M. S. Sreekala, P. Koshy, and S. Thomas, J. Appl. Polym. Sci., 109, 1439 (2008).

    CAS  Google Scholar 

  63. S. Daud, H. Ismail, and A. A. Bakar, Procedia Chem., 19, 327 (2016).

    CAS  Google Scholar 

  64. Y. Swolfs, L. Crauwels, E. V. Breda, L. Gorbatikh, P. Hine, I. Ward, and I. Verpoest, Compos. Part A-Appl. S., 59, 78 (2014).

    CAS  Google Scholar 

Download references

Acknowledgment

This work is supported by Ministry of Higher Education (MOHE) Malaysia and Universiti Teknologi Malaysia (UTM) with grant number of FRGS — R.J130000.7851.5F082. Dr. Atefeh Karimzadeh is a researcher of UTM under the Post-Doctoral Fellowship Scheme for the project: “Development of Soft Composite Materials with Improved Impact Resistance Using Natural Fabric and Nano-Silica Based Shear Thickening Fluid (STF)”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Karimzadeh or M. Y. Yahya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimzadeh, A., Yahya, M.Y., Abdullah, M.N. et al. Effect of Stacking Sequence on Mechanical Properties and Moisture Absorption Characteristic of Hybrid PALF/Glass Fiber Composites. Fibers Polym 21, 1583–1593 (2020). https://doi.org/10.1007/s12221-020-9640-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9640-2

Keywords

Navigation