Skip to main content
Log in

Nanofibrous Membranes with High Air Permeability and Fluffy Structure based on Low Temperature Electrospinning Technology

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Due to its small diameter and high density, electrospun nanofiber membranes have high resistance which obstacles their application. In this paper, we proposed a new electrospinning method based on low-temperature, which can affect the deposition process of electrospinning by utilizing the freezing process of steam in the receiving plate. The filling and supporting of ice could enlarge the pores of membranes and intervals among fibers, which caused the high porosity (92 %), rough surface, fluffy structure and low pressure drop (123 Pa) of polyvinylidene fluoride (PVDF) nanofibrous membranes. The results suggested that the electrospinning method is a promising way to prepare nanofibrous membranes with high air permeability and fluffy structure for air filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Kao, S. K. Su, C. I. Su, A. W. Lee, and J. K. Chen, Aerosol. Sci. Tech, 50, 615 (2016).

    Article  CAS  Google Scholar 

  2. K. Yoon, B. S. Hsiao, and B. Chu, J. Mater. Chem., 18, 5326 (2008).

    Article  CAS  Google Scholar 

  3. C. H. Hung and W. W. F. Leung, Sep. Purif. Technol, 79, 34 (2011).

    Article  CAS  Google Scholar 

  4. M. Zhu, J. Han, F. Wang, W. Shao, R. Xiong, Q. Zhang, H. Pan, Y. Yang, S. K. Samal, F. Zhang, and C. Huang, Macromol. Mater. Eng, 302, 1600353 (2017).

    Article  Google Scholar 

  5. E. Vijayakumar, A. Subramania, Z. Fei, and P. J. Dyson, RSC Adv, 5, 52026 (2015).

    Article  CAS  Google Scholar 

  6. M. Zhu, R. Xiong, and C. Huang, Carbohydr. Polym., 205, 55 (2019).

    Article  Google Scholar 

  7. M. Venkataraman, R. Mishra, J. Militky, X. Xiong, J. Marek, J. Yao, and G. Zhu, Polym. Adavan. Technol, 29, 2583 (2018).

    Article  CAS  Google Scholar 

  8. X. Mao, Y. Bai, J. Yu, and B. Ding, J. Am. Ceram. Soc., 99, 2760 (2016).

    Article  CAS  Google Scholar 

  9. Q. Wang, F. Khan, L. Wei, H. Shen, and C. Zhang, Sep. Purif. Technol, 177, 40 (2017).

    Article  CAS  Google Scholar 

  10. W. Ma, Z. Guo, J. Zhao, Q. Yu, F. Wang, and J. Han, Sep. Purif. Technol., 177, 71 (2017).

    Article  CAS  Google Scholar 

  11. Y. Wang, W. Li, Y. Xia, X. Jiao, and D. Chen, J. Mater. Chem. A, 2, 15124 (2014).

    Article  CAS  Google Scholar 

  12. D. Lv, M. Zhu, Z. Jiang, S. Jiang, Q. Zhang, R. Xiong, and C. Huang, Macromal. Mater. Eng, 303, 1800336 (2018).

    Article  Google Scholar 

  13. D. Lv, R. Wang, G. Tang, Z. Mou, J. Lei, J. Han, S. D. Smedt, R. Xiong, and C. Huang, ACS Appl. Mater. Interfaces, 11, 12880 (2019).

    Article  CAS  Google Scholar 

  14. R. Wang, S. Guan, A. Sato, X. Wang, Z. Wang, and R. Yang, J. Membrane Sci., 446, 376 (2013).

    Article  CAS  Google Scholar 

  15. X. Wang, Q. Fu, X. Wang, Y. Si, and J. Yu, J. Mater. Chem. B, 3, 7281 (2015).

    Article  CAS  Google Scholar 

  16. N. Wang, Y. Yang, S. S. Aldeyab, M. Elnewehy, J. Yu, and B. Ding, J. Mater. Chem. A, 3, 23946 (2015).

    Article  CAS  Google Scholar 

  17. X. Li, N. Wang, G. Fan, J. Yu, J. Gao, G. Sun, and B. Ding, J. Colloid Interface Sci., 439, 12 (2015).

    Article  CAS  Google Scholar 

  18. J. P. Brincat, D. Sardella, A. Muscat, S. Decelis, J. N. Grima, and V. Valdramidis, Trends Food Sci. Tech., 50, 175 (2016).

    Article  CAS  Google Scholar 

  19. Y. S. Zhang, C. Y. Wang, L. Wang, J. W. Chen, and K. Qiao, Adv. Mater. Res, 726, 2135 (2013).

    Google Scholar 

  20. W. W. F. Leung, C. H. Hung, and P. T. Yuen, Sep. Purif. Technol., 71, 30 (2010).

    Article  CAS  Google Scholar 

  21. Q. P. Pham, U. Sharma, and A. G. Mikos, Biomacromolecules, 7, 2796 (2006).

    Article  CAS  Google Scholar 

  22. J. Wang, S. C. Kim, and D. Y. H. Pui, J. Aerosol. Sci., 39, 323 (2008).

    Article  CAS  Google Scholar 

  23. S. Zhang, N. Tang, L. Cao, X. Yin, J. Yu, and B. Ding, ACS Appl. Mater. Inter, 8, 29062 (2016).

    Article  CAS  Google Scholar 

  24. M. Kucukali-Ozturk, E. Ozden-Yenigun, B. Nergis, and C. Candan, J. Ind. Text, 46, 1498 (2017).

    Article  Google Scholar 

  25. N. Vitchuli, Q. Shi, J. Nowak, M. Mccord, M. Bourham, and X. Zhang, J. Appl. Polym. Sci., 116, 2181 (2010).

    CAS  Google Scholar 

  26. K. Liu, Z. Xiao, P. Ma, J. Chen, M. Li, Q. Liu, and D. Wang, RSC Adv, 5, 87924 (2015).

    Article  CAS  Google Scholar 

  27. H. Wan, N. Wang, J. Yang, Y. Si, K. Chen, and B. Ding, J. ColloidInterf. Sci., 417, 18 (2014).

    Article  CAS  Google Scholar 

  28. X. Mao, Y. Si, Y. Chen, L. Yang, F. Zhao, and B. Ding, RSC Adv, 2, 12216 (2012).

    Article  CAS  Google Scholar 

  29. W. Li, Y. Xing, Y. Wu, J. Wang, L. Chen, and G. Yang, Electrochim. Acta, 151, 289 (2015).

    Article  CAS  Google Scholar 

  30. A. K. Selvam and G. Nallathambi, Fiber. Polym., 16, 1327 (2015).

    Article  CAS  Google Scholar 

  31. T. G. Kim, H. J. Chung, and T. G. Park, Acta Biomater., 4, 1611 (2008).

    Article  CAS  Google Scholar 

  32. L. Bao, K. Seki, H. Niinuma, Y. Otani, R. Balgis, and T. Ogi, Sep. Purif. Technol, 159, 100 (2016).

    Article  CAS  Google Scholar 

  33. X. Wang, B. Ding, G. Sun, M. Wang, and J. Yu, Prog. Mater. Sci., 58, 1173 (2013).

    Article  CAS  Google Scholar 

  34. G. R. Xu, H. L. Zhao, and S. B. Wu, Desalin. Water Treat., 57, 23522 (2016).

    Article  CAS  Google Scholar 

  35. L. H. Lou, X. H. Qin, and H. Zhang, Text. Res. J, 87, 208 (2017).

    Article  CAS  Google Scholar 

  36. M. Simonet, O. D Schneider, P. Neuenschwander, and W. J. Stark, Polym Eng Sci., 47, 2020 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Health and Education joint Tackling Plan of Fujian Province (No.WKJ2016-2-21) and The National Natural Science Foundation of China (No.61674125) and Aeronautical Science Funds (No.20160868004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingyun Wang or Wenlong Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Huang, X., Bu, Z. et al. Nanofibrous Membranes with High Air Permeability and Fluffy Structure based on Low Temperature Electrospinning Technology. Fibers Polym 21, 1466–1474 (2020). https://doi.org/10.1007/s12221-020-9904-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9904-x

Keywords

Navigation