Skip to main content
Log in

Effects of Face Sheet Structure on Mechanical Properties of 3D Integrated Woven Spacer Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Due to the lightweight, structural integrity, superior heat and sound insulation performance, three-dimensional (3D) integrated woven spacer composites are expected to be used in many fields such as marine, automotive, electronics, and building industries. This paper reports the effects of face sheet structure on the mechanical properties of 3D integrated woven spacer composites. Three-point bending, quasi-static compression and low-velocity impact tests were conducted to compare the mechanical responses of 3D woven spacer composites with plain and complex face sheets. The floating yarn segments in complex face sheet could efficiently transfer the stress to neighboring areas and lead to a more balanced stress distribution. The existence of floats thus has positive effect on mechanical properties of composites. On the contrary, plain structure surface was dense and the stress transfer was easily hindered by numerous weaving points, resulting in stress concentration and ultimate premature failure. As a consequence, for surface-dominated properties such as warp-direction bending and impact resistance, 3D integrated woven spacer composites with complex surface is better and should be given priority during industrial applications. In terms of weft-direction bending property and quasi-static compressive performance, which more depend on the structure of core piles, show little difference between the composites with different surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Zhao, D. Li, T. Ge, L. Jiang, and N. Jiang, Mater. Des., 56, 50 (2014).

    Article  Google Scholar 

  2. D. Li, C. Zhao, L. Jiang, and N. Jiang, Compos. Struct., 111, 56 (2014).

    Article  Google Scholar 

  3. M. Li, S. Wang, Z. Zhang, and B. Wu, Appl. Compos. Mater., 16, 1 (2009).

    Article  Google Scholar 

  4. H. Cao, K. Qian, D. Sheng, and J. Tang, Shanghai Text. Sci. Technol., 38, 54 (2010).

    Google Scholar 

  5. U. K. Vaidya, M. V. Hosur, D. Earl, and S. Jeelani, Compos. Part A-Appl. S., 31, 761 (2000).

    Article  Google Scholar 

  6. K. Mehmet, G. Hakan, I. Jan, and K. Nevin, Text. Res. J., 82, 945 (2012).

    Article  Google Scholar 

  7. M. K. Bannister, R. Braemar, and P. J. Crothers, Compos. Struct., 47, 687 (1999).

    Article  Google Scholar 

  8. G. Zhou, Z. Zhong, L. Zhang, and N. Kuang, J. Nanjing Univ. Aeronaut. Astronaut., 39, 11 (2007).

    CAS  Google Scholar 

  9. D. Li, C. Zhao, N. Jiang, and L. Jiang, Mater. Lett., 148, 103 (2015).

    Article  CAS  Google Scholar 

  10. A. H. Seyyed, S. Mojtaba, and M. M. Reza, J. Compos. Mater, 49, 3285 (2015).

    Article  Google Scholar 

  11. S. M. Soni, R. F. Gibson, and E. O. Ayorinde, Compos. Sci. Technol., 69, 829 (2009).

    Article  CAS  Google Scholar 

  12. A. Kus, I. Durgun, and R. Ertan, J. Sandw. Struct. Mater., 20, 517 (2018).

    Article  CAS  Google Scholar 

  13. M. Karahan, S. H. Gul, and N. Karahan, J. Rein. Plast. Compos., 32, 664 (2013).

    Article  CAS  Google Scholar 

  14. L. Zhu, L. Lyu, X. Zhang, Y. Wang, J. Guo, and X. Xiong, Materials, 12, 1075 (2019).

    Article  CAS  Google Scholar 

  15. H. Fan, Q. Zhou, W. Yang, and J. Zheng, Compos. Part B-Eng., 41, 686 (2010).

    Article  Google Scholar 

  16. H. Fan, W. Yang, and Q. Zhou, Compos. Part B-Eng., 42, 1151 (2011).

    Article  Google Scholar 

  17. A. W. Van Vuure, J. A. Ivwns, and I. Verpoest, Compos. Part A-Appl. S., 31, 671 (2000).

    Article  Google Scholar 

  18. A. W. Van Vuure, J. A. Ivwns, and I. Verpoest, Compos. Sci. Technol., 60, 1263 (2000).

    Article  Google Scholar 

  19. Z. Wu, J. Xiao, J. Zeng, and J. Liu, J. Sandw. Struct. Mater., 16, 5 (2014).

    Article  Google Scholar 

  20. M. V. Hosur, M. Abdullah, and S. Jeelani, Compos. Struct., 65, 103 (2004).

    Article  Google Scholar 

  21. T. W. Shyr and Y. H. Pan, Compos. Struct., 64, 189 (2004).

    Article  Google Scholar 

  22. A. S. Vaidya, U. K. Vaidya, and N. Uddin, Mater. Sci. Eng. A, 472, 52 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial supports by Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP, No.2019L0327). The financial supports from Shanxi Province Science Foundation for Youths (No.201901D211089) are also gratefully acknowledged. The authors would also like to deliver their sincere thanks to the editors and anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Wang, X., Liu, S. et al. Effects of Face Sheet Structure on Mechanical Properties of 3D Integrated Woven Spacer Composites. Fibers Polym 21, 1594–1604 (2020). https://doi.org/10.1007/s12221-020-9908-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9908-6

Keywords

Navigation