Skip to main content
Log in

Melt-Electrospun Polyvinylbutyral Bonded Polypropylene Composite Fibrous Mat: Spinning Process, Structure and Mechanical Property Study

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, a novel polyvinylbutyral (PVB) bonded polypropylene (PP) composite fibrous mat was fabricated via melt-electrospinning. In order to enhance the structure stability and mechanical properties of pristine PP fibrous mat system, preparation and characterization of the composite fibrous material by mixing different percentages of PVB and PP was designed. The PVB can form bonding point between the PP fibers, which can ease the slip phenomenon between strained fibers. The structure, morphology, tensile and tearing stress were measured systematically. The resultants exhibited that the tensile stress and tearing strength of composite fibrous mats were increased from 30.13 to 43.73 kPa and from 0.07 to 0.5 N, respectively. Meanwhile, the straight jet length and whipping range of each electrospun jets were analyzed via the images captured by a high-speed photography system during the spinning process. The experimental resultants depicted that composite system can lead to longer straight jet length and smaller whipping range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Solmaz, D. Soodabeh, and R. Reza, J. Biomat. Sci.- Polym. E., 29, 1185 (2018).

    Google Scholar 

  2. R. Tarasi, M. Khoobi, and H. Niknejad, J. Magn. Mater., 417, 451 (2016).

    CAS  Google Scholar 

  3. H. Wu, J. Fan, and C. C. Chu, J. Mater Sci.-Mater. Med., 21, 3207 (2010).

    CAS  PubMed  Google Scholar 

  4. X. L. Zhao, Y. Y Li, and T. Hua, Small, 13, 1603306 (2016).

    Google Scholar 

  5. T. Subbiah, G. S. Bhat, and R. W. Tock, Appl. Polym. Sci., 96, 557 (2005).

    CAS  Google Scholar 

  6. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer, 45, 2017 (2004).

    CAS  Google Scholar 

  7. Y. Liu, X. Wang, and H. J. Yan, J. Mater. Sci., 46, 7877 (2011).

    CAS  Google Scholar 

  8. X. N. Wang, Y. Xu, and Q. F. Wei, Adv. Mater. Res., 332–334, 1550 (2011).

    Google Scholar 

  9. H. J. Zhou, T. B. Green, and Y. L. Joo, Polymer, 47, 7497 (2006).

    CAS  Google Scholar 

  10. C. Vando, T. T. T. Nguyen, and J. S. Park, Sol Energy Mater Sol. Cells, 104, 131 (2012).

    CAS  Google Scholar 

  11. A. Karchin, F. I. Simonovsky, and B. D. Ratner, Acta Biomater, 7, 3277 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. X. Y. Li, H. C. Liu, and J. N. P. Wang, Polymer, 53, 248 (2012).

    CAS  Google Scholar 

  13. L. Larrondo and R. S. J. Manley, J. Polym. Sci., 19, 909 (1981).

    CAS  Google Scholar 

  14. Y. Liu, F. W. Zhao, and C. J. Zhang, J. Serbian Chem. Soc., 77, 1071 (2012).

    CAS  Google Scholar 

  15. X. Li, X. N. Wang, and Y. Xu, New Chem. Mater., 40, 49 (2012).

    Google Scholar 

  16. S. B. Mitchell and J. E. J. Sanders, J. Biomed. Mater. Res. Part A, 80, 768 (2010).

    Google Scholar 

  17. M. Takasaki, H. Fu, and K. Nakata, Sen-i Gakkaishi, 64, 29 (2008).

    CAS  Google Scholar 

  18. X. Y. Yuan and S. Wu, J. Tianjin University, 39, 1232 (2006).

    CAS  Google Scholar 

  19. X. F. Wang and Z. M. Huang, J. Polym. Sci., 28, 45 (2010).

    Google Scholar 

  20. L. R. Nayak, I. L. Kyratzis, and Y. B. Truong, J. Mater. Sci., 47, 6387 (2012).

    CAS  Google Scholar 

  21. R. N. Fang and X. Li, Fine Petrochem. Ind., 28, 32 (2011).

    CAS  Google Scholar 

  22. A. R. Zanjanijam, S. Hakim, and H. Azizi, Polym. Bull., 75, 4671 (2018).

    CAS  Google Scholar 

  23. L. J. Chen, J. D. Liao, and S. J. Lin, Polymer, 50, 3516 (2009).

    CAS  Google Scholar 

  24. M. Zhang and J. Y. Sheng, Macromol. Mater. Eng., 8, 302 (2017).

    Google Scholar 

  25. A. Viviane, L. Escocio, and L. Y. Visconte, Macromolecular Symposia, 381, 1800127 (2018).

    Google Scholar 

  26. Y. R. Qiu and O. Y. Wei, Polym. Mater. Sci. Eng., 26, 19 (2010).

    CAS  Google Scholar 

  27. Y. S. Zheng, N. Meng, and B. J. Xin, Polymers, 10, 842 (2018).

    PubMed Central  Google Scholar 

  28. H. Z. Xu, Y. Masaki, and Y. Hideki, Polymer, 132, 206 (2017).

    CAS  Google Scholar 

  29. Y. Zheng, S. Xie, and Y. Zeng, J. Mater. Sci., 48, 6647 (2013).

    CAS  Google Scholar 

  30. W. C. Xiao, P. Y. Wu, and J. C. Feng, J. Appl. Polym. Sci., 108, 3370 (2008).

    CAS  Google Scholar 

  31. B. Na, R. Lv, H. Xu, W. F. Chen, R. Zhao, and Z. X. Yi, Polym. Int., 57, 1128 (2008).

    CAS  Google Scholar 

  32. K. H. Lee, H. Y. Kim, and Y. J. Ryu, J. Polym. Sci. Pol. Phys., 41, 1256 (2003).

    CAS  Google Scholar 

  33. J. S. Ge and F. Y. Fu, RSCAdv., 3, 2248 (2013).

    CAS  Google Scholar 

  34. N. F. Huang, S. Patel, R. G. Thakar, J. Wu, B. S. Hsiao, B. Chu, R. J. Lee, and S. Li, Nano Lett., 6, 537 (2006).

    CAS  PubMed  Google Scholar 

  35. H. Wu, J. Fan, and C. C. Chu, J. Mater. Sci. Mater. Med., 21, 3207 (2010).

    CAS  PubMed  Google Scholar 

  36. N. Dayyani, S. Khoee, and A. Ramazani, Eur. J. Med. Chem., 98, 190 (2015).

    CAS  PubMed  Google Scholar 

  37. S. H. Sadr, S. Davaran, and E. Alizadeh, J. Biomat. Sci.- Polym. E., 29, 277 (2018).

    Google Scholar 

  38. H. V. Raeisdasteh, S. Davaran, and A. Ramazani, J. Biomat. Sci.-Polym. E, 28, 1797 (2017).

    Google Scholar 

  39. A. Sadighi, S. F. Motevalizadeh, and M. Hosseini, Appl. Biochem. Biotech., 182, 1371 (2017).

    CAS  Google Scholar 

  40. E. Gholibegloo, A. Karbasi, and M. Pourhajibagher, J. Photoh. Photobio. B, 181, 14 (2018).

    CAS  Google Scholar 

  41. H. V. Raeisdasteh, D. Soodabeh, and A. Marziyeh, Tissue Eng. Regen. Med., 15, 735 (2018).

    Google Scholar 

  42. R. Tarasi, M. Khoobi, and H. Niknejad, J. Magn. Mater., 417, 451 (2016).

    CAS  Google Scholar 

  43. S. H. Sadr, S. Davaran, and E. Alizade, J. Drug Deliv. Sci. Technol., 45, 240 (2018).

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 11702169), Scientific Research Staring Foundation of Shanghai University of Engineering Science (Grant No. 2017–19). This work was supported by Talents Action Program of Shanghai University of Engineering Science (Grant No. 2017RC432017) and National Natural Science Youth Fund (Grant No. 21808165). Research and innovation project for Postgraduates of Shanghai University of engineering science (Grant No. 0239-E3-0903-19-01399).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binjie Xin.

Support Information

12221_2020_1079_MOESM1_ESM.pdf

Melt-Electrospun Polyvinylbutyral Bonded Polypropylene Composite Fibrous Mat: Spinning Process, Structure and Mechanical Property Study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhang, F., Xin, B. et al. Melt-Electrospun Polyvinylbutyral Bonded Polypropylene Composite Fibrous Mat: Spinning Process, Structure and Mechanical Property Study. Fibers Polym 21, 1430–1437 (2020). https://doi.org/10.1007/s12221-020-1079-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1079-y

Keywords

Navigation