Skip to main content
Log in

Modelling and Prediction of Stress Relaxation for Thermal Bonded Nonwoven Geotextiles

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Stress relaxation experiments were performed on three types of thermal bonded nonwoven geotextiles in this study to model and predict their stress relaxation behaviors. Four mechanical models, including the standard linear solid mechanics model, Eyring’s model, the modified two-Maxwell-unit model and the modified three-Maxwell-unit model were used to predict stress values for 600 h based on 3 and 90 h experimental relaxation data. Results indicated that Eyring’s model and the modified three-Maxwell-unit model fitted the experimental results better than the other two. Estimation using modified three-Maxwell-unit model seemed to construct an upper bound while that using Eyring’s model form a lower bound for the corresponding experimental data. In addition, predicted curves were much closer to the experimental curve when equations of the two models were built with the 90 h experimental data than those data of 3 h. Thus, the prediction capability of the two models can be substantially improved by employing the data with longer time. In summary, the combination of the modified three-Maxwell-unit model and Eyring’s model can well forcast the range of actual stress during stress relaxation experiments with the longer term experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nachane and V. Sundaram, J. Text. Inst., 86, 10 (1995).

    Article  CAS  Google Scholar 

  2. W. Żurek, M. Chrzanowski, and W. Sybilska, J. Achieve Mater. Manuf. Eng., 43, 702 (2012).

    Google Scholar 

  3. J. Song, F. Liang, and F. Shi, J. Text. Res. (in Chinese), 28, 40 (2007).

    Google Scholar 

  4. D. Šajn, Ph. D. Dissertation, University of Ljubljana, Slovenia, 2004.

    Google Scholar 

  5. G. Hinrichsen in “An Introduction to the Mechanical Properties of solid polymers”, 2nd ed. (I. M. Ward and D. W. Hadley Eds.), pp.79–80, Chichester: John Wiley & Sons Ltd., UK, 2004.

  6. A. M. Manich and M. D. D. Castellar, Text. Res. J., 62, 196 (1992).

    Article  CAS  Google Scholar 

  7. W. E. Morton and J. W. S. Hearle, “Physical Properties of Textile Fibres”, 4th ed., pp.237–242, Textile Institute, Manchester, UK, 2008.

    Book  Google Scholar 

  8. L. Vangheluwe, Text. Res. J., 62, 586 (1992).

    Article  Google Scholar 

  9. A. M. Manich, J. Maillo, and D. Cayuela, J. Appl. Polym. Sci., 105, 2482 (2008).

    Article  Google Scholar 

  10. H. Zhang and C. Luo, Beijing Text. (in Chinese), 25, 57 (2004).

    Google Scholar 

  11. L. Xie, Y. Sun, and H. Zhang, Beijing Text. (in Chinese), 5, 15 (2001).

    Google Scholar 

  12. B. Sun, L. Xie and H. Zhang, Tech. Text. (in Chinese), 20, 29 (2002).

    Google Scholar 

  13. J. Cheng, MA. Eng. Dissertation, Qingdao University, China, 2004.

    Google Scholar 

  14. A. Asayesh and A. Jedi, Text. Res. J., 80, 642 (2010).

    Article  CAS  Google Scholar 

  15. X. Gao, Y. Sun, and Z. Meng, J. Appl. Polym. Sci., 124, 1160 (2012).

    Article  CAS  Google Scholar 

  16. D. Sajn, J. Gersak, and R. Flajs, Text. Res. J., 76, 742 (2006).

    Article  CAS  Google Scholar 

  17. S. Jafari and M. Ghane, J. Text. Inst., 108, 1905 (2017).

    Article  CAS  Google Scholar 

  18. S. Jafari and M. Ghane, Fiber. Polym., 17, 651 (2016).

    Article  Google Scholar 

  19. S. Khavari and M. Ghane, Fiber. Polym., 18, 190 (2017).

    Article  Google Scholar 

  20. H. Liu, W. Yu, and H. Jin, J. Appl. Polym. Sci., 110, 2078 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the research program of Zhejiang Bureau of Quality and Technical Supervision under grant No. 20140256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Gao, X., Fu, C. et al. Modelling and Prediction of Stress Relaxation for Thermal Bonded Nonwoven Geotextiles. Fibers Polym 21, 1611–1617 (2020). https://doi.org/10.1007/s12221-020-9995-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9995-4

Keywords

Navigation