Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Traditional Uses, Therapeutic Effects and Recent Advances of Curcumin: A Mini-Review

Author(s): Layal Slika and Digambara Patra*

Volume 20, Issue 12, 2020

Page: [1072 - 1082] Pages: 11

DOI: 10.2174/1389557520666200414161316

Price: $65

Abstract

Studies regarding the uses and biological benefits curcumin have long been paid worldwide attention. Curcumin is a polyphenol found in the turmeric spice, which is derived from the rhizomes of Curcuma longa. Curcumin is a major constituent of the traditional Indian holistic system, Ayurveda, and it is well-known in treating diverse ailments. The aim of this study is to conduct an overview that introduces the traditional uses and therapeutic effects of this valuable phytochemical with more focus on the antitumor results. This review was conducted based on published articles on PubMed, Medline, and Web of Science databases. In this study, the search strategy identified 103 references. Curcumin is found to possess many functions in recent years. It is commonly used for its antioxidant, antimicrobial, anti-inflammatory, antitumor, anti-diabetic, hypolipidemic, hepatoprotective, and neuroprotective effects. Curcumin has been greatly reported to prevent many diseases through modulating several signaling pathways, and the molecular bases of its anti-tumor bioactivities are imputed to the antiproliferative, anti-inflammatory, pro-apoptotic, anti-angiogenesis and anti-metastasis effects. The antitoxic potential of curcumin against various toxin like Aflatoxin B1 is reported. Although curcumin is a safe and promising phytochemical, it suffers from bioavailability problems that limit its therapeutic efficacy. Thus, various promising strategies allowed for the achievement of multiple and effective varieties of curcumin formulations, such as adjuvants, nanoparticles, liposome, micelle and phospholipid complexes, metal complexes, derivatives, and analogues. In conclusion, curcumin is widely used for myriad therapeutic purposes that trigger its significant value. This short review aims to highlight the known biological activities of curcumin and provide evidence for its antitumor effects.

Keywords: Curcumin, polyphenol, herbal medicine, antitumor, antioxidant, formulations.

Graphical Abstract
[1]
Akram, M.; Shahab-Uddin, A.A.; Usmanghani, K.; Hannan, A.; Mohiuddin, E.; Asif, M. Curcuma longa and curcumin: A review article. Rom. J. Biol. Plant Biol., 2010, 55(2), 65-70.
[2]
Mohanty, C.; Das, M.; Sahoo, S.K. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin. Drug Deliv., 2012, 9(11), 1347-1364.
[http://dx.doi.org/10.1517/17425247.2012.724676] [PMID: 22971222]
[3]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: from kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[4]
Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods, 2017, 6(10) E92
[http://dx.doi.org/10.3390/foods6100092] [PMID: 29065496]
[5]
Gupta, S.C.; Kismali, G.; Aggarwal, B.B. Curcumin, a component of turmeric: from farm to pharmacy. Biofactors, 2013, 39(1), 2-13.
[http://dx.doi.org/10.1002/biof.1079] [PMID: 23339055]
[6]
Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: from ancient medicine to current clinical trials. Cell. Mol. Life Sci., 2008, 65(11), 1631-1652.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[7]
Araújo, C.C.; Leon, L.L. Biological activities of Curcuma longa L. Mem. Inst. Oswaldo Cruz, 2001, 96(5), 723-728.
[http://dx.doi.org/10.1590/S0074-02762001000500026] [PMID: 11500779]
[8]
Aggarwal, B.B.; Takada, Y.; Oommen, O.V. From chemoprevention to chemotherapy: common targets and common goals. Expert Opin. Investig. Drugs, 2004, 13(10), 1327-1338.
[http://dx.doi.org/10.1517/13543784.13.10.1327] [PMID: 15461561]
[9]
Noorafshan, A.; Ashkani-Esfahani, S. A review of therapeutic effects of curcumin. Curr. Pharm. Des., 2013, 19(11), 2032-2046.
[PMID: 23116311]
[10]
Sundar Dhilip Kumar, S.; Houreld, N.N.; Abrahamse, H. Therapeutic potential and recent advances of curcumin in the treatment of aging-associated diseases. Molecules, 2018, 23(4) E835
[http://dx.doi.org/10.3390/molecules23040835] [PMID: 29621160]
[11]
Liu, X.F.; Hao, J.L.; Xie, T.; Mukhtar, N.J.; Zhang, W.; Malik, T.H.; Lu, C.W.; Zhou, D.D. Curcumin, a potential therapeutic candidate for anterior segment eye diseases: A review. Front. Pharmacol., 2017, 8, 66.
[http://dx.doi.org/10.3389/fphar.2017.00066] [PMID: 28261099]
[12]
Muhammad, I.; Sun, X.; Wang, H.; Li, W.; Wang, X.; Cheng, P.; Li, S.; Zhang, X.; Hamid, S. Curcumin successfully inhibited the computationally identified CYP2A6 enzyme-mediated bioactivation of aflatoxin B1 in arbor acres broiler. Front. Pharmacol., 2017, 8, 143.
[http://dx.doi.org/10.3389/fphar.2017.00143] [PMID: 28377720]
[13]
Cui, X.; Muhammad, I.; Li, R.; Jin, H.; Guo, Z.; Yang, Y.; Hamid, S.; Li, J.; Cheng, P.; Zhang, X. Development of a UPLC-FLD method for detection of aflatoxin B1 and M1 in animal tissue to study the effect of curcumin on mycotoxin clearance rates. Front. Pharmacol., 2017, 8, 650.
[http://dx.doi.org/10.3389/fphar.2017.00650] [PMID: 28959206]
[14]
Wang, H.; Muhammad, I.; Li, W.; Sun, X.; Cheng, P.; Zhang, X. Sensitivity of Arbor Acres broilers and chemoprevention of aflatoxin B1-induced liver injury by curcumin, a natural potent inducer of phase-II enzymes and Nrf2. Environ. Toxicol. Pharmacol., 2018, 59, 94-104.
[http://dx.doi.org/10.1016/j.etap.2018.03.003] [PMID: 29550706]
[15]
Muhammad, I.; Wang, H.; Sun, X.; Wang, X.; Han, M.; Lu, Z.; Cheng, P.; Hussain, M.A.; Zhang, X. Dual role of dietary curcumin through attenuating AFB1-induced oxidative stress and liver injury via modulating liver phase-I and phase-II enzymes involved in AFB1 bioactivation and detoxification. Front. Pharmacol., 2018, 9, 554.
[http://dx.doi.org/10.3389/fphar.2018.00554] [PMID: 29887802]
[16]
Wang, X.; Muhammad, I.; Sun, X.; Han, M.; Hamid, S.; Zhang, X. Protective role of curcumin in ameliorating AFB1-induced apoptosis via mitochondrial pathway in liver cells. Mol. Biol. Rep., 2018, 45(5), 881-891.
[http://dx.doi.org/10.1007/s11033-018-4234-4] [PMID: 29974318]
[17]
Mantzorou, M.; Pavlidou, E.; Vasios, G.; Tsagalioti, E.; Giaginis, C. Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother. Res., 2018, 32(6), 957-975.
[http://dx.doi.org/10.1002/ptr.6037] [PMID: 29468820]
[18]
Zheng, J.; Cheng, J.; Zheng, S.; Feng, Q.; Xiao, X. curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front. Pharmacol., 2018, 9, 472.
[http://dx.doi.org/10.3389/fphar.2018.00472] [PMID: 29867479]
[19]
Yang, Y.S.; Su, Y.F.; Yang, H.W.; Lee, Y.H.; Chou, J.I.; Ueng, K.C. Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother. Res., 2014, 28(12), 1770-1777.
[http://dx.doi.org/10.1002/ptr.5197] [PMID: 25131839]
[20]
Qin, S.; Huang, L.; Gong, J.; Shen, S.; Huang, J.; Ren, H.; Hu, H. Efficacy and safety of turmeric and curcumin in lowering blood lipid levels in patients with cardiovascular risk factors: a meta-analysis of randomized controlled trials. Nutr. J., 2017, 16(1), 68.
[http://dx.doi.org/10.1186/s12937-017-0293-y] [PMID: 29020971]
[21]
Lin, J.K.; Shih, C.A. Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by phorbol-12-myristate-13-acetate in NIH3T3 cells. Carcinogenesis, 1994, 15(8), 1717-1721.
[http://dx.doi.org/10.1093/carcin/15.8.1717] [PMID: 8055654]
[22]
Sreejayan, ; Rao, M.N. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol., 1997, 49(1), 105-107.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06761.x] [PMID: 9120760]
[23]
Abe, Y.; Hashimoto, S.; Horie, T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol. Res., 1999, 39(1), 41-47.
[http://dx.doi.org/10.1006/phrs.1998.0404] [PMID: 10051376]
[24]
Reddy, A.C.; Lokesh, B.R. Studies on anti-inflammatory activity of spice principles and dietary n-3 polyunsaturated fatty acids on carrageenan-induced inflammation in rats. Ann. Nutr. Metab., 1994, 38(6), 349-358.
[http://dx.doi.org/10.1159/000177833] [PMID: 7702364]
[25]
Venkatesan, N.; Chandrakasan, G. Modulation of cyclophosphamide-induced early lung injury by curcumin, an anti-inflammatory antioxidant. Mol. Cell. Biochem., 1995, 142(1), 79-87.
[http://dx.doi.org/10.1007/BF00928916] [PMID: 7753045]
[26]
Zheng, Z.; Sun, Y.; Liu, Z.; Zhang, M.; Li, C.; Cai, H. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des. Devel. Ther., 2015, 9, 4931-4942.
[PMID: 26345159]
[27]
Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168.
[http://dx.doi.org/10.1089/107555303321223035] [PMID: 12676044]
[28]
Daily, J.W.; Yang, M.; Park, S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J. Med. Food, 2016, 19(8), 717-729.
[http://dx.doi.org/10.1089/jmf.2016.3705] [PMID: 27533649]
[29]
Cavaleri, F. Presenting a new standard drug model for turmeric and its prized extract, curcumin. Int. J. Inflamm., 2018, 2018, 5023429
[http://dx.doi.org/10.1155/2018/5023429] [PMID: 29568482]
[30]
Toda, S.; Miyase, T.; Arichi, H.; Tanizawa, H.; Takino, Y. Natural antioxidants. III. Antioxidative components isolated from rhizome of Curcuma longa L. Chem. Pharm. Bull. (Tokyo), 1985, 33(4), 1725-1728.
[http://dx.doi.org/10.1248/cpb.33.1725] [PMID: 4042250]
[31]
Cohly, H.H.; Taylor, A.; Angel, M.F.; Salahudeen, A.K. Effect of turmeric, turmerin and curcumin on H2O2-induced renal epithelial (LLC-PK1) cell injury. Free Radic. Biol. Med., 1998, 24(1), 49-54.
[http://dx.doi.org/10.1016/S0891-5849(97)00140-8] [PMID: 9436613]
[32]
Manikandan, P.; Sumitra, M.; Aishwarya, S.; Manohar, B.M.; Lokanadam, B.; Puvanakrishnan, R. Curcumin modulates free radical quenching in myocardial ischaemia in rats. Int. J. Biochem. Cell Biol., 2004, 36(10), 1967-1980.
[http://dx.doi.org/10.1016/j.biocel.2004.01.030] [PMID: 15203111]
[33]
Calabrese, V.; Butterfield, D.A.; Stella, A.M. Nutritional antioxidants and the heme oxygenase pathway of stress tolerance: novel targets for neuroprotection in Alzheimer’s disease. Ital. J. Biochem., 2003, 52(4), 177-181.
[PMID: 15141484]
[34]
Yang, F.; Lim, G.P.; Begum, A.N.; Ubeda, O.J.; Simmons, M.R.; Ambegaokar, S.S.; Chen, P.P.; Kayed, R.; Glabe, C.G.; Frautschy, S.A.; Cole, G.M. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem., 2005, 280(7), 5892-5901.
[http://dx.doi.org/10.1074/jbc.M404751200] [PMID: 15590663]
[35]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: a short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[36]
Farzaei, M.H.; Zobeiri, M.; Parvizi, F.; El-Senduny, F.F.; Marmouzi, I.; Coy-Barrera, E.; Naseri, R.; Nabavi, S.M.; Rahimi, R.; Abdollahi, M. Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 2018, 10(7) E855
[http://dx.doi.org/10.3390/nu10070855] [PMID: 29966389]
[37]
Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.; DE Lillo, A.; Laino, L.; Lo Muzio, L. Biological and therapeutic activities, and anticancer properties of curcumin. Exp. Ther. Med., 2015, 10(5), 1615-1623.
[http://dx.doi.org/10.3892/etm.2015.2749] [PMID: 26640527]
[38]
Doello, K.; Ortiz, R.; Alvarez, P.J.; Melguizo, C.; Cabeza, L.; Prados, J. Latest in vitro and in vivo assay, clinical trials and patents in cancer treatment using curcumin: A literature review. Nutr. Cancer, 2018, 70(4), 569-578.
[http://dx.doi.org/10.1080/01635581.2018.1464347] [PMID: 29708445]
[39]
Wilken, R.; Veena, M.S.; Wang, M.B.; Srivatsan, E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer, 2011, 10(1), 12.
[http://dx.doi.org/10.1186/1476-4598-10-12] [PMID: 21299897]
[40]
Limtrakul, P.; Lipigorngoson, S.; Namwong, O.; Apisariyakul, A.; Dunn, F.W. Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Lett., 1997, 116(2), 197-203.
[http://dx.doi.org/10.1016/S0304-3835(97)00187-0] [PMID: 9215864]
[41]
Deshpande, S.S.; Ingle, A.D.; Maru, G.B. Chemopreventive efficacy of curcumin-free aqueous turmeric extract in 7,12-dimethylbenz[a]anthracene-induced rat mammary tumorigenesis. Cancer Lett., 1998, 123(1), 35-40.
[http://dx.doi.org/10.1016/S0304-3835(97)00400-X] [PMID: 9461015]
[42]
Ushida, J.; Sugie, S.; Kawabata, K.; Pham, Q.V.; Tanaka, T.; Fujii, K.; Takeuchi, H.; Ito, Y.; Mori, H. Chemopreventive effect of curcumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. Jpn. J. Cancer Res., 2000, 91(9), 893-898.
[http://dx.doi.org/10.1111/j.1349-7006.2000.tb01031.x] [PMID: 11011116]
[43]
Sreepriya, M.; Bali, G. Effects of administration of Embelin and Curcumin on lipid peroxidation, hepatic glutathione antioxidant defense and hematopoietic system during N-nitrosodiethylamine/Phenobarbital-induced hepatocarcinogenesis in Wistar rats. Mol. Cell. Biochem., 2006, 284(1-2), 49-55.
[http://dx.doi.org/10.1007/s11010-005-9012-7] [PMID: 16477385]
[44]
Mahady, G.B.; Pendland, S.L.; Yun, G.; Lu, Z.Z. Turmeric (Curcuma longa) and curcumin inhibit the growth of Helicobacter pylori, a group 1 carcinogen. Anticancer Res., 2002, 22(6C), 4179-4181.
[PMID: 12553052]
[45]
Rao, C.V.; Simi, B.; Reddy, B.S. Inhibition by dietary curcumin of azoxymethane-induced ornithine decarboxylase, tyrosine protein kinase, arachidonic acid metabolism and aberrant crypt foci formation in the rat colon. Carcinogenesis, 1993, 14(11), 2219-2225.
[http://dx.doi.org/10.1093/carcin/14.11.2219] [PMID: 8242846]
[46]
Huang, M.T.; Lou, Y.R.; Ma, W.; Newmark, H.L.; Reuhl, K.R.; Conney, A.H. Inhibitory effects of dietary curcumin on forestomach, duodenal, and colon carcinogenesis in mice. Cancer Res., 1994, 54(22), 5841-5847.
[PMID: 7954412]
[47]
Kim, J.M.; Araki, S.; Kim, D.J.; Park, C.B.; Takasuka, N.; Baba-Toriyama, H.; Ota, T.; Nir, Z.; Khachik, F.; Shimidzu, N.; Tanaka, Y.; Osawa, T.; Uraji, T.; Murakoshi, M.; Nishino, H.; Tsuda, H. Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine initiation. Carcinogenesis, 1998, 19(1), 81-85.
[http://dx.doi.org/10.1093/carcin/19.1.81] [PMID: 9472697]
[48]
Rao, C.V.; Rivenson, A.; Simi, B.; Reddy, B.S. Chemoprevention of colon cancer by dietary curcumin. Ann. N. Y. Acad. Sci., 1995, 768, 201-204.
[http://dx.doi.org/10.1111/j.1749-6632.1995.tb12122.x] [PMID: 8526348]
[49]
Kawamori, T.; Lubet, R.; Steele, V.E.; Kelloff, G.J.; Kaskey, R.B.; Rao, C.V.; Reddy, B.S. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res., 1999, 59(3), 597-601.
[PMID: 9973206]
[50]
Collett, G.P.; Robson, C.N.; Mathers, J.C.; Campbell, F.C. Curcumin modifies Apc(min) apoptosis resistance and inhibits 2-amino 1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induced tumour formation in Apc(min) mice. Carcinogenesis, 2001, 22(5), 821-825.
[http://dx.doi.org/10.1093/carcin/22.5.821] [PMID: 11323404]
[51]
Pereira, M.A.; Grubbs, C.J.; Barnes, L.H.; Li, H.; Olson, G.R.; Eto, I.; Juliana, M.; Whitaker, L.M.; Kelloff, G.J.; Steele, V.E.; Lubet, R.A. Effects of the phytochemicals, curcumin and quercetin, upon azoxymethane-induced colon cancer and 7,12-dimethylbenz[a]anthracene-induced mammary cancer in rats. Carcinogenesis, 1996, 17(6), 1305-1311.
[http://dx.doi.org/10.1093/carcin/17.6.1305] [PMID: 8681447]
[52]
Kwon, Y.; Malik, M.; Magnuson, B.A. Inhibition of colonic aberrant crypt foci by curcumin in rats is affected by age. Nutr. Cancer, 2004, 48(1), 37-43.
[http://dx.doi.org/10.1207/s15327914nc4801_6] [PMID: 15203376]
[53]
Shpitz, B.; Giladi, N.; Sagiv, E.; Lev-Ari, S.; Liberman, E.; Kazanov, D.; Arber, N. Celecoxib and curcumin additively inhibit the growth of colorectal cancer in a rat model. Digestion, 2006, 74(3-4), 140-144.
[http://dx.doi.org/10.1159/000098655] [PMID: 17228149]
[54]
Sugimoto, K.; Hanai, H.; Tozawa, K.; Aoshi, T.; Uchijima, M.; Nagata, T.; Koide, Y. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology, 2002, 123(6), 1912-1922.
[http://dx.doi.org/10.1053/gast.2002.37050] [PMID: 12454848]
[55]
Salh, B.; Assi, K.; Templeman, V.; Parhar, K.; Owen, D.; Gómez-Muñoz, A.; Jacobson, K. Curcumin attenuates DNB-induced murine colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(1), G235-G243.
[http://dx.doi.org/10.1152/ajpgi.00449.2002] [PMID: 12637253]
[56]
Ukil, A.; Maity, S.; Karmakar, S.; Datta, N.; Vedasiromoni, J.R.; Das, P.K. Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br. J. Pharmacol., 2003, 139(2), 209-218.
[http://dx.doi.org/10.1038/sj.bjp.0705241] [PMID: 12770926]
[57]
Venkataranganna, M.V.; Rafiq, M.; Gopumadhavan, S.; Peer, G.; Babu, U.V.; Mitra, S.K. NCB-02 (standardized Curcumin preparation) protects dinitrochlorobenzene- induced colitis through down-regulation of NFkappa-B and iNOS. World J. Gastroenterol., 2007, 13(7), 1103-1107.
[http://dx.doi.org/10.3748/wjg.v13.i7.1103] [PMID: 17373747]
[58]
Singh, S.V.; Hu, X.; Srivastava, S.K.; Singh, M.; Xia, H.; Orchard, J.L.; Zaren, H.A. Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis, 1998, 19(8), 1357-1360.
[http://dx.doi.org/10.1093/carcin/19.8.1357] [PMID: 9744529]
[59]
Ikezaki, S.; Nishikawa, A.; Furukawa, F.; Kudo, K.; Nakamura, H.; Tamura, K.; Mori, H. Chemopreventive effects of curcumin on glandular stomach carcinogenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine and sodium chloride in rats. Anticancer Res., 2001, 21(5), 3407-3411.
[PMID: 11848501]
[60]
Chuang, S.E.; Cheng, A.L.; Lin, J.K.; Kuo, M.L. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem. Toxicol., 2000, 38(11), 991-995.
[http://dx.doi.org/10.1016/S0278-6915(00)00101-0] [PMID: 11038236]
[61]
Hecht, S.S.; Kenney, P.M.; Wang, M.; Trushin, N.; Agarwal, S.; Rao, A.V.; Upadhyaya, P. Evaluation of butylated hydroxyanisole, myo-inositol, curcumin, esculetin, resveratrol and lycopene as inhibitors of benzo[a]pyrene plus 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis in A/J mice. Cancer Lett., 1999, 137(2), 123-130.
[http://dx.doi.org/10.1016/S0304-3835(98)00326-7] [PMID: 10374832]
[62]
Huang, M.T.; Lou, Y.R.; Xie, J.G.; Ma, W.; Lu, Y.P.; Yen, P.; Zhu, B.T.; Newmark, H.; Ho, C.T. Effect of dietary curcumin and dibenzoylmethane on formation of 7,12-dimethylbenz[a]anthracene-induced mammary tumors and lymphomas/leukemias in Sencar mice. Carcinogenesis, 1998, 19(9), 1697-1700.
[http://dx.doi.org/10.1093/carcin/19.9.1697] [PMID: 9771944]
[63]
Singletary, K.; MacDonald, C.; Wallig, M.; Fisher, C. Inhibition of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis and DMBA-DNA adduct formation by curcumin. Cancer Lett., 1996, 103(2), 137-141.
[http://dx.doi.org/10.1016/0304-3835(96)04224-3] [PMID: 8635149]
[64]
Inano, H.; Onoda, M.; Inafuku, N.; Kubota, M.; Kamada, Y.; Osawa, T.; Kobayashi, H.; Wakabayashi, K. Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays. Carcinogenesis, 1999, 20(6), 1011-1018.
[http://dx.doi.org/10.1093/carcin/20.6.1011] [PMID: 10357781]
[65]
Azuine, M.A.; Bhide, S.V. Protective single/combined treatment with betel leaf and turmeric against methyl (acetoxymethyl) nitrosamine-induced hamster oral carcinogenesis. Int. J. Cancer, 1992, 51(3), 412-415.
[http://dx.doi.org/10.1002/ijc.2910510313] [PMID: 1592532]
[66]
Tanaka, T.; Makita, H.; Ohnishi, M.; Hirose, Y.; Wang, A.; Mori, H.; Satoh, K.; Hara, A.; Ogawa, H. Chemoprevention of 4-nitroquinoline 1-oxide-induced oral carcinogenesis by dietary curcumin and hesperidin: comparison with the protective effect of beta-carotene. Cancer Res., 1994, 54(17), 4653-4659.
[PMID: 8062259]
[67]
Imaida, K.; Tamano, S.; Kato, K.; Ikeda, Y.; Asamoto, M.; Takahashi, S.; Nir, Z.; Murakoshi, M.; Nishino, H.; Shirai, T. Lack of chemopreventive effects of lycopene and curcumin on experimental rat prostate carcinogenesis. Carcinogenesis, 2001, 22(3), 467-472.
[http://dx.doi.org/10.1093/carcin/22.3.467] [PMID: 11238188]
[68]
Ishizaki, C.; Oguro, T.; Yoshida, T.; Wen, C.Q.; Sueki, H.; Iijima, M. Enhancing effect of ultraviolet A on ornithine decarboxylase induction and dermatitis evoked by 12-o-tetradecanoylphorbol-13-acetate and its inhibition by curcumin in mouse skin. Dermatology (Basel), 1996, 193(4), 311-317.
[http://dx.doi.org/10.1159/000246276] [PMID: 8993955]
[69]
Lu, Y.P.; Chang, R.L.; Huang, M.T.; Conney, A.H. Inhibitory effect of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced increase in ornithine decarboxylase mRNA in mouse epidermis. Carcinogenesis, 1993, 14(2), 293-297.
[http://dx.doi.org/10.1093/carcin/14.2.293] [PMID: 8435870]
[70]
Huang, M.T.; Ma, W.; Yen, P.; Xie, J.G.; Han, J.; Frenkel, K.; Grunberger, D.; Conney, A.H. Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis, 1997, 18(1), 83-88.
[http://dx.doi.org/10.1093/carcin/18.1.83] [PMID: 9054592]
[71]
Takaba, K.; Hirose, M.; Yoshida, Y.; Kimura, J.; Ito, N.; Shirai, T. Effects of n-tritriacontane-16,18-dione, curcumin, chlorphyllin, dihydroguaiaretic acid, tannic acid and phytic acid on the initiation stage in a rat multi-organ carcinogenesis model. Cancer Lett., 1997, 113(1-2), 39-46.
[http://dx.doi.org/10.1016/S0304-3835(96)04579-X] [PMID: 9065799]
[72]
Allegra, A.; Innao, V.; Russo, S.; Gerace, D.; Alonci, A.; Musolino, C. Anticancer activity of curcumin and its analogues: Preclinical and clinical studies. Cancer Invest., 2017, 35(1), 1-22.
[http://dx.doi.org/10.1080/07357907.2016.1247166] [PMID: 27996308]
[73]
Shishodia, S.; Chaturvedi, M.M.; Aggarwal, B.B. Role of curcumin in cancer therapy. Curr. Probl. Cancer, 2007, 31(4), 243-305.
[http://dx.doi.org/10.1016/j.currproblcancer.2007.04.001] [PMID: 17645940]
[74]
Tuorkey, M.J. Curcumin a potent cancer preventive agent: Mechanisms of cancer cell killing. Interv. Med. Appl. Sci., 2014, 6(4), 139-146.
[http://dx.doi.org/10.1556/IMAS.6.2014.4.1] [PMID: 25598986]
[75]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[76]
Dulbecco, P.; Savarino, V. Therapeutic potential of curcumin in digestive diseases. World J. Gastroenterol., 2013, 19(48), 9256-9270.
[http://dx.doi.org/10.3748/wjg.v19.i48.9256] [PMID: 24409053]
[77]
Karunagaran, D.; Rashmi, R.; Kumar, T.R. Induction of apoptosis by curcumin and its implications for cancer therapy. Curr. Cancer Drug Targets, 2005, 5(2), 117-129.
[http://dx.doi.org/10.2174/1568009053202081] [PMID: 15810876]
[78]
Plummer, S.M.; Holloway, K.A.; Manson, M.M.; Munks, R.J.; Kaptein, A.; Farrow, S.; Howells, L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene, 1999, 18(44), 6013-6020.
[http://dx.doi.org/10.1038/sj.onc.1202980] [PMID: 10557090]
[79]
Anand, P.; Sundaram, C.; Jhurani, S.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett., 2008, 267(1), 133-164.
[http://dx.doi.org/10.1016/j.canlet.2008.03.025] [PMID: 18462866]
[80]
Wargovich, M.J.; Chen, C.D.; Jimenez, A.; Steele, V.E.; Velasco, M.; Stephens, L.C.; Price, R.; Gray, K.; Kelloff, G.J. Aberrant crypts as a biomarker for colon cancer: evaluation of potential chemopreventive agents in the rat. Cancer Epidemiol. Biomarkers Prev., 1996, 5(5), 355-360.
[PMID: 9162301]
[81]
Bar-Sela, G.; Epelbaum, R.; Schaffer, M. Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr. Med. Chem., 2010, 17(3), 190-197.
[http://dx.doi.org/10.2174/092986710790149738] [PMID: 20214562]
[82]
Roy, M.; Chakraborty, S.; Siddiqi, M.; Bhattacharya, R.K. Induction of Apoptosis in Tumor Cells by Natural Phenolic Compounds. Asian Pac. J. Cancer Prev., 2002, 3(1), 61-67.
[PMID: 12718610]
[83]
Chearwae, W.; Anuchapreeda, S.; Nandigama, K.; Ambudkar, S.V.; Limtrakul, P. Biochemical mechanism of modulation of human P-glycoprotein (ABCB1) by curcumin I, II, and III purified from Turmeric powder. Biochem. Pharmacol., 2004, 68(10), 2043-2052.
[http://dx.doi.org/10.1016/j.bcp.2004.07.009] [PMID: 15476675]
[84]
Sharma, R.A.; McLelland, H.R.; Hill, K.A.; Ireson, C.R.; Euden, S.A.; Manson, M.M.; Pirmohamed, M.; Marnett, L.J.; Gescher, A.J.; Steward, W.P. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin. Cancer Res., 2001, 7(7), 1894-1900.
[PMID: 11448902]
[85]
Garcea, G.; Berry, D.P.; Jones, D.J.; Singh, R.; Dennison, A.R.; Farmer, P.B.; Sharma, R.A.; Steward, W.P.; Gescher, A.J. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol. Biomarkers Prev., 2005, 14(1), 120-125.
[PMID: 15668484]
[86]
Braumann, C.; Guenther, N.; Loeffler, L.M.; Dubiel, W. Liver metastases after colonic carcinoma--palliative chemotherapy plus curcumin. Int. J. Colorectal Dis., 2009, 24(7), 859-860.
[http://dx.doi.org/10.1007/s00384-009-0651-0] [PMID: 19184061]
[87]
He, Z.Y.; Shi, C.B.; Wen, H.; Li, F.L.; Wang, B.L.; Wang, J. Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Invest., 2011, 29(3), 208-213.
[http://dx.doi.org/10.3109/07357907.2010.550592] [PMID: 21314329]
[88]
Schneider, C.; Gordon, O.N.; Edwards, R.L.; Luis, P.B. Degradation of Curcumin: From Mechanism to Biological Implications. J. Agric. Food Chem., 2015, 63(35), 7606-7614.
[http://dx.doi.org/10.1021/acs.jafc.5b00244] [PMID: 25817068]
[89]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[90]
Burgos-Morón, E.; Calderón-Montaño, J.M.; Salvador, J.; Robles, A.; López-Lázaro, M. The dark side of curcumin. Int. J. Cancer, 2010, 126(7), 1771-1775.
[PMID: 19830693]
[91]
Bansal, S. S.; Goel, M.; Aqil, F.; Vadhanam, M. V.; Gupta, R. C. Advanced drug-delivery systems of curcumin for cancer chemoprevention., 2011.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0006]
[92]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov. Today, 2012, 17(1-2), 71-80.
[http://dx.doi.org/10.1016/j.drudis.2011.09.009] [PMID: 21959306]
[93]
Sun, M.; Su, X.; Ding, B.; He, X.; Liu, X.; Yu, A.; Lou, H.; Zhai, G. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (Lond.), 2012, 7(7), 1085-1100.
[http://dx.doi.org/10.2217/nnm.12.80] [PMID: 22846093]
[94]
Nasrallah, O.; El Kurdi, R.; Mouslmani, M.; Patra, D. Doping of ZnO nanoparticles with curcumin: pH dependent release and DPPH scavenging activity of curcumin in the nanocomposites. Curr. Nanomater., 2018, 3(3), 147-152.
[http://dx.doi.org/10.2174/2405461503666181116115755]
[95]
Mouslmani, M.; Rosenholm, J.M.; Prabhakar, N.; Peurla, M.; Baydoun, E.; Patra, D. Curcumin associated poly(allylamine hydrochloride)-phosphate self-assembled hierarchically ordered nanocapsules: size dependent investigation on release and DPPH scavenging activity of curcumin. RSC Advances, 2015, 5, 18740-18750.
[http://dx.doi.org/10.1039/C4RA12831A]
[96]
Patra, D.; Sleem, F. A new method for pH triggered curcumin release by applying poly(L-lysine) mediated nanoparticle-congregation. Anal. Chim. Acta, 2013, 795, 60-68.
[http://dx.doi.org/10.1016/j.aca.2013.07.063] [PMID: 23998538]
[97]
El Khoury, E.; Patra, D. Ionic liquid expedites partition of curcumin into solid gel but discourages into liquid crystalline phases of 1,2-dimyristoyl-sn-glycero-3-phosphocholine liposome. J. Phys. Chem. B, 2013, 117, 9699-9708.
[http://dx.doi.org/10.1021/jp4061413] [PMID: 23895644]
[98]
Naksuriya, O.; Okonogi, S.; Schiffelers, R.M.; Hennink, W.E. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35(10), 3365-3383.
[http://dx.doi.org/10.1016/j.biomaterials.2013.12.090] [PMID: 24439402]
[99]
Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res. Treat., 2014, 46(1), 2-18.
[http://dx.doi.org/10.4143/crt.2014.46.1.2] [PMID: 24520218]
[100]
Ghalandarlaki, N.; Alizadeh, A. M.; Ashkani-Esfahani, S. Nanotechnology-applied curcumin for different diseases therapy., 2014.
[http://dx.doi.org/10.1155/2014/394264]
[101]
Moussa, Z.; Chebl, M.; Patra, D. Interaction of curcumin with 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine liposomes: Intercalation of rhamnolipids enhances membrane fluidity, permeability and stability of drug molecule. Colloids Surf. B Biointerfaces, 2017, 149, 30-37.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.002] [PMID: 27716529]
[102]
Banerjee, S.; Chakravarty, A.R. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc. Chem. Res., 2015, 48(7), 2075-2083.
[http://dx.doi.org/10.1021/acs.accounts.5b00127] [PMID: 26158541]
[103]
Jäger, R.; Lowery, R.P.; Calvanese, A.V.; Joy, J.M.; Purpura, M.; Wilson, J.M. Comparative absorption of curcumin formulations. Nutr. J., 2014, 13(1), 11.
[http://dx.doi.org/10.1186/1475-2891-13-11] [PMID: 24461029]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy