Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T21:41:39.063Z Has data issue: false hasContentIssue false

On Trudinger-type Inequalities in Orlicz-Morrey Spaces of an Integral Form

Published online by Cambridge University Press:  03 April 2020

Ritva Hurri-Syrjänen
Affiliation:
Department of Mathematics and Statistics, University of Helsinki, FI-00014Helsinki, Finland e-mail: ritva.hurri-syrjanen@helsinki
Takao Ohno
Affiliation:
Faculty of Education, Oita University, Dannoharu Oita-city870-1192, Japan e-mail: t-ohno@oita-u.ac.jp
Tetsu Shimomura*
Affiliation:
Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima739-8524, Japan

Abstract

We give Trudinger-type inequalities for Riesz potentials of functions in Orlicz-Morrey spaces of an integral form over non-doubling metric measure spaces. Our results are new even for the doubling metric measure setting. In particular, our results improve and extend the previous results in Morrey spaces of an integral form in the Euclidean case.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

R. Hurri-Syrjänen’s visit to Hiroshima University was supported by her grant from the Academy of Finland.

References

Adams, D. R. and Hedberg, L. I., Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften. 314, Springer-Verlag, Berlin, 1996. https://doi.org/10.1007/978-3-662-03282-4Google Scholar
Alberico, A. and Cianchi, A., Differentiability properties of Orlicz-Sobolev functions. Ark. Mat. 43(2005), 128. https://doi.org/10.1007/BF02383608CrossRefGoogle Scholar
Björn, A. and Björn, J., Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics, 17. European Mathematical Society (EMS), Zurich, 2011. https://doi.org/10.4171/099Google Scholar
Cruz-Uribe, D. and Shukla, P., The boundedness of fractional maximal operators on variable Lebesgue spaces over spaces of homogeneous type. Studia Math. 242 (2018), no. 2, 109139. https://doi.org/10.4064/sm8556-6-2017Google Scholar
Edmunds, D. E., Gurka, P. and Opic, B., Double exponential integrability, Bessel potentials and embedding theorems. Studia Math. 115 (1995), 151181.Google Scholar
Edmunds, D. E., Gurka, P., and Opic, B., Sharpness of embeddings in logarithmic Bessel-potential spaces. Proc. Roy. Soc. Edinburgh Sect. A. 126 (1996), 9951009. https://doi.org/10.1017/S0308210500023210CrossRefGoogle Scholar
Edmunds, D. E. and Hurri-Syrjänen, R., Sobolev inequalities of exponential type. Israel. J. Math. 123 (2001), 6192. https://doi.org/10.1007/BF02784120CrossRefGoogle Scholar
Edmunds, D. E. and Krbec, M., Two limiting cases of Sobolev imbeddings. Houston J. Math. 21 (1995), 119128.Google Scholar
Hajłasz, P. and Koskela, P., Sobolev met Poincaré. Mem. Amer. Math. Soc. 145 (2000), no. 688. https://doi.org/10.1090/memo/0688Google Scholar
Harjulehto, P. and Hurri-Syrjänen, R., Embeddings into Orlicz spaces for functions from unbounded irregular domains. Complex Anal. Oper. Theory 13 (2019), no. 6, 29672992. https://doi.org/10.1007/s11785-019-00898-yCrossRefGoogle Scholar
Hedberg, L. I., On certain convolution inequalities. Proc. Amer. Math. Soc. 36 (1972), 505510. https://doi.org/10.2307/2039187CrossRefGoogle Scholar
Kairema, A., Two-weight norm inequalities for potential type and maximal operators in a metric space. Publ. Mat. 57 (2013) 356. https://doi.org/10.5565/PUBLMAT_57113_01CrossRefGoogle Scholar
Maeda, F.-Y., Mizuta, Y., Ohno, T., and Shimomura, T., Boundedness of maximal operators and Sobolev’s inequality on Musielak-Orlicz-Morrey spaces. Bull. Sci. Math. 137 (2013), 7696. https://doi.org/10.1016/j.bulsci.2012.03.008CrossRefGoogle Scholar
Mizuta, Y., Nakai, E., Ohno, T., and Shimomura, T., An elementary proof of Sobolev embeddings for Riesz potentials of functions in Morrey spaces {L}^{1,\nu, \beta }(G). Hiroshima Math. J. 38 (2008), 425436.CrossRefGoogle Scholar
Mizuta, Y., Nakai, E., Ohno, T., and Shimomura, T., Boundedness of fractional integral operators on Morrey spaces and Sobolev embeddings for generalized Riesz potentials. J. Math. Soc. Japan 62 (2010), 707744.CrossRefGoogle Scholar
Mizuta, Y. and Shimomura, T., Exponential integrability for Riesz potentials of functions in Orlicz classes. Hiroshima Math. J. 28 (1998), 355371.CrossRefGoogle Scholar
Mizuta, Y. and Shimomura, T., Differentiability and Hölder continuity of Riesz potentials of Orlicz functions. Analysis (Munich) 20 (2000), no. 3, 201223. https://doi.org/10.1524/anly.2000.20.3.201Google Scholar
Mizuta, Y. and Shimomura, T., Continuity properties of Riesz potentials of Orlicz functions. Tohoku Math. J. 61 (2009), no. 2, 225240. https://doi.org/10.2748/tmj/1245849445CrossRefGoogle Scholar
Mizuta, Y. and Shimomura, T., Sobolev’s inequality for Riesz potentials of functions in Morrey spaces of integral form. Math. Nachr. 283 (2010), no. 9, 13361352. https://doi.org/10.1002/mana.200710122CrossRefGoogle Scholar
Mizuta, Y., Shimomura, T., and Sobukawa, T., Sobolev’s inequality for Riesz potentials of functions in non-doubling Morrey spaces. Osaka J. Math. 46 (2009), 255271.Google Scholar
Morrey, C. B., On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), 126166. https://doi.org/10.2307/1989904CrossRefGoogle Scholar
Nakai, E., Generalized fractional integrals on Orlicz-Morrey spaces, Banach and function spaces, Yokohama Publ., Yokohama, 2004, pp. 323333Google Scholar
Nazarov, F., Treil, S., and Volberg, A., Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. Notices (1997), no. 15, 703726. https://doi.org/10.1155/S1073792897000469CrossRefGoogle Scholar
Nazarov, F., Treil, S., and Volberg, A., Weak type estimates and Cotlar inequalities for Calderön-Zygmund operators on nonhomogeneous spaces. Internat. Math. Res. Notices (1998), no. 9, 463487. https://doi.org/10.1155/S1073792898000312CrossRefGoogle Scholar
Ohno, T. and Shimomura, T., Sobolev inequalities for Riesz potentials of functions in {L}^{p\left(\cdot \right)}over nondoubling measure spaces. Bull. Aust. Math. Soc. 93 (2016), 128136. https://doi.org/10.1017/S0004972715001331CrossRefGoogle Scholar
Peetre, J., On the theory of {L}_{p,\lambda } spaces. J. Funct. Anal. 4 (1969), 7187. https://doi.org/10.1016/0022-1236(69)90022-6CrossRefGoogle Scholar
Sawano, Y. and Shimomura, T., Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents. Collect. Math. 64 (2013), 313350. https://doi.org/10.1007/s13348-013-0082-7CrossRefGoogle Scholar
Sawano, Y., Sobukawa, T., and Tanaka, H., Limiting case of the boundedness of fractional integral operators on non-homogeneous space. J. Inequal. Appl. (2006), Art. ID 92470, 16 pp. https://doi.org/10.1155/JIA/2006/92470Google Scholar
Serrin, J., A remark on Morrey potential. In: Control methods in PDE-dynamical systems, Contemp. Math., 426, Amer. Math. Soc., Providence, RI, 2007, pp. 307315. https://doi.org/10.1090/conm/426/08195CrossRefGoogle Scholar