Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Structural deformation of elastic polythiophene with disiloxane moieties under stretching

Abstract

For the development of wearable and stretchable devices, insights into the mechanical properties and structural deformation of functional conjugated polymers are required. In particular, polythiophene has received much attention as a typical hole transfer material in electronic devices. However, the widely accepted polythiophenes are brittle because of the rigid chemical structure of thiophene rings. We have reported on the synthesis and flexible properties of polythiophene with disiloxane groups in side chains, and it was revealed that the polythiophene exhibited greater than 200% elongation at break at room temperature. In this study, we investigated the deformation process of polythiophene through in situ measurements under stretching using X-ray diffraction of synchrotron radiation and polarized infrared spectroscopy. In the X-ray diffraction measurements, orientation of the crystallites occurred after yielding, while the relative intensities of the polarized infrared absorption bands gradually increased during stretching. As seen from these results, during the initial deformation, the polythiophene chains in the amorphous region were aligned, and then, the whole bulk of the polythiophene, including crystallites and amorphous regions, were oriented after yielding. We succeeded in tracing the structural deformation of polythiophene during stretching.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun. 2013;4:2761.

    PubMed  Google Scholar 

  2. Li Y. Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res. 2012;45:723–33.

    CAS  PubMed  Google Scholar 

  3. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Phot. 2012;6:153–61.

    CAS  Google Scholar 

  4. Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature. 2004;428:911–8.

    CAS  PubMed  Google Scholar 

  5. Sirringhaus H. Device physics of solution-processed organic field-effect transistors. Adv Mater. 2005;17:2411–25.

    CAS  Google Scholar 

  6. Kim D-H, Ahn J-H, Choi WM, Kim H-S, Kim T-H, Song J, et al. Stretchable and foldable silicon integrated circuits. Science. 2008;320:507 LP–511.

    Google Scholar 

  7. Han T-H, Lee Y, Choi M-R, Woo S-H, Bae S-H, Hong BH, et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics. 2012;6:105.

    CAS  Google Scholar 

  8. Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature. 2014;515:96.

    CAS  PubMed  Google Scholar 

  9. Cao Q, Rogers JA. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater. 2009;21:29–53.

    CAS  Google Scholar 

  10. Guimard NK, Gomez N, Schmidt CE. Conducting polymers in biomedical engineering. Prog Polym Sci. 2007;32:876–921.

    CAS  Google Scholar 

  11. Kudo H, Sawada T, Kazawa E, Yoshida H, Iwasaki Y, Mitsubayashi K. A flexible and wearable glucose sensor based on functional polymers with Soft-MEMS techniques. Biosens Bioelectron. 2006;22:558–62.

    CAS  PubMed  Google Scholar 

  12. Dang Z-M, Yuan J-K, Yao S-H, Liao R-J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater. 2013;25:6334–65.

    CAS  PubMed  Google Scholar 

  13. Meng C, Liu C, Chen L, Hu C, Fan S. Highly flexible and all-solid-state paperlike polymer supercapacitors. Nano Lett. 2010;10:4025–31.

    CAS  PubMed  Google Scholar 

  14. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845.

    CAS  PubMed  Google Scholar 

  15. Sup Choi M, Lee G-H, Yu Y-J, Lee D-Y, Hwan Lee S, Kim P, et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat Commun. 2013;4:1624.

    Google Scholar 

  16. Bertolazzi S, Krasnozhon D, Kis A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano. 2013;7:3246–52.

    CAS  PubMed  Google Scholar 

  17. Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, et al. Organic nonvolatile memory transistors for flexible sensor arrays. Science. 2009;326:1516 LP–1519.

    Google Scholar 

  18. Mannsfeld SCB, Tee BC-K, Stoltenberg RM, Chen CVH-H, Barman S, Muir BVO, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater. 2010;9:859.

    CAS  PubMed  Google Scholar 

  19. Choi M-C, Kim Y, Ha C-S. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci. 2008;33:581–630.

    CAS  Google Scholar 

  20. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J Neuroeng Rehabil. 2012;9:21.

    PubMed  PubMed Central  Google Scholar 

  21. Vashi S, Ram J, Modi J, Verma S, Prakash C. Internet of Things (IoT): A vision, architectural elements, and security issues In 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). 2017, pp. 492–6.

  22. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of things (IoT): a vision, architectural elements, and future directions. Futur Gener Comput Syst. 2013;29:1645–60.

    Google Scholar 

  23. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706.

    CAS  PubMed  Google Scholar 

  24. Jiang J, Li Y, Liu J, Huang X, Yuan C, (David) Lou XW. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater. 2012;24:5166–80.

    CAS  PubMed  Google Scholar 

  25. Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun. 2014;5:3132.

    PubMed  Google Scholar 

  26. Park M, Im J, Shin M, Min Y, Park J, Cho H, et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nano. 2012;7:803–9.

    CAS  Google Scholar 

  27. Koerner H, Price G, Pearce NA, Alexander M, Vaia RA. Remotely actuated polymer nanocomposites—stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater. 2004;3:115–20.

    CAS  PubMed  Google Scholar 

  28. Cao J, Lu C, Zhuang J, Liu M, Zhang X, Yu Y, et al. Multiple hydrogen bonding enables the self-healing of sensors for human–machine interactions. Angew Chem Int Ed. 2017;56:8795–800.

    CAS  Google Scholar 

  29. Gray DS, Tien J, Chen CS. High-conductivity elastomeric electronics. Adv Mater. 2004;16:393–7.

    CAS  Google Scholar 

  30. Rosset S, Shea HR. Flexible and stretchable electrodes for dielectric elastomer actuators. Appl Phys A. 2013;110:281–307.

    CAS  Google Scholar 

  31. Lacour SP, Benmerah S, Tarte E, FitzGerald J, Serra J, McMahon S, et al. Flexible and stretchable micro-electrodes for in vitro and in vivo neural interfaces. Med Biol Eng Comput. 2010;48:945–54.

    PubMed  Google Scholar 

  32. Choong C-L, Shim M-B, Lee B-S, Jeon S, Ko D-S, Kang T-H, et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater. 2014;26:3451–8.

    CAS  PubMed  Google Scholar 

  33. Wang G-JN, Gasperini A, Bao Z. Stretchable polymer semiconductors for plastic electronics. Adv Electron Mater. 2018;4:1700429.

    Google Scholar 

  34. Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev. 2017;117:6467–99.

    CAS  PubMed  Google Scholar 

  35. Fujita K, Sumino Y, Ide K, Tamba S, Shono K, Shen J, et al. Synthesis of poly(3-substituted thiophene)s of remarkably high solubility in hydrocarbon via nickel-catalyzed deprotonative cross-coupling polycondensation. Macromolecules. 2016;49:1259–69.

    CAS  Google Scholar 

  36. Shen J, Fujita K, Matsumoto T, Hongo C, Misaki M, Ishida K, et al. Mechanical, thermal, and electrical properties of flexible polythiophene with disiloxane side chains. Macromol Chem Phys. 2017;218:1700197.

    Google Scholar 

  37. Shen J, Sugimoto I, Matsumoto T, Horike S, Koshiba Y, Ishida K, et al. Fabrication and characterization of elastomeric semiconductive thiophene polymers by peroxide crosslinking. Polym J. 2019;51:257–63.

    CAS  Google Scholar 

  38. Higashihara T, Fukuta S, Ochiai Y, Sekine T, Chino K, Koganezawa T, et al. Synthesis and deformable hierarchical nanostructure of intrinsically stretchable ABA triblock copolymer composed of poly(3-hexylthiophene) and polyisobutylene segments. ACS Appl Polym Mater. 2019;1:315–20.

    CAS  Google Scholar 

  39. Higashihara T, Ito S, Fukuta S, Miyane S, Ochiai Y, Ishizone T, et al. Synthesis and characterization of multicomponent ABC- and ABCD-type miktoarm star-branched polymers containing a poly(3-hexylthiophene) segment. ACS Macro Lett. 2016;5:631–5.

    CAS  Google Scholar 

  40. Miyane S, Wen H-F, Chen W-C, Higashihara T. Synthesis of block copolymers comprised of poly(3-hexylthiophene) segment with trisiloxane side chains and their application to organic thin film transistor. J Polym Sci Part A Polym Chem. 2018;56:1787–94.

    CAS  Google Scholar 

  41. Mei J, Kim DH, Ayzner AL, Toney MF, Bao Z. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J Am Chem Soc. 2011;133:20130–3.

    CAS  PubMed  Google Scholar 

  42. Han AR, Lee J, Lee HR, Lee J, Kang SH, Ahn H, et al. Siloxane side chains: a universal tool for practical applications of organic field-effect transistors. Macromolecules. 2016;49:3739–48.

    CAS  Google Scholar 

  43. Masunaga H, Ogawa H, Takano T, Sasaki S, Goto S, Tanaka T, et al. Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polym J. 2011;43:471–7.

    CAS  Google Scholar 

  44. Hotta S, Shimotsuma W, Taketani M. Fourier transform infrared study of electrochemically prepared polythienylene films with varying doping levels. Synth Met. 1984;10:85–94.

    CAS  Google Scholar 

  45. Hotta S, Soga M, Sonoda N. Infrared dichroic studies of polythiophenes. J Phys Chem. 1989;93:4994–8.

    CAS  Google Scholar 

  46. Johnson LM, Gao L, Shields IV CW, Smith M, Efimenko K, Cushing K, et al. Elastomeric microparticles for acoustic mediated bioseparations. J Nanobiotechnology. 2013;11:22.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kou ACM. Polydimethylsiloxane In Polymer data handbook, 2nd edition. In Mark JE, editor. Oxford University Press; 2009. pp. 539–61.

Download references

Acknowledgements

The synchrotron radiation experiments were performed at the BL03XU beamline of SPring‐8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos 2017A7209, 2017B7261, 2018A7211, 2018B7261, 2019A7209, and 2019B7259)

Funding

This work was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas, “New Polymeric Materials Based on Element-Blocks (No. 2401)” (MEXT/JSPS KAKENHI Grant Number JP 24102009), from The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nishino.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Kashimoto, M., Matsumoto, T. et al. Structural deformation of elastic polythiophene with disiloxane moieties under stretching. Polym J 52, 1273–1278 (2020). https://doi.org/10.1038/s41428-020-0385-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-0385-y

This article is cited by

Search

Quick links