Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Resonant Andreev reflections probed by photon-assisted tunnelling at the atomic scale

This article has been updated

Abstract

Tunnelling across superconducting junctions proceeds by a rich variety of processes, which transfer single electrons, Cooper pairs or even larger numbers of electrons by multiple Andreev reflections. Photon-assisted tunnelling combined with the venerable Tien–Gordon model has long been a powerful tool to identify tunnelling processes between superconductors. Here, we probe superconducting tunnel junctions including an impurity-induced Yu–Shiba–Rusinov (YSR) state by exposing a scanning tunnelling microscope with a superconducting tip to microwave radiation. We find that a simple Tien–Gordon description describes tunnelling of single electrons and Cooper pairs into the bare substrate, but breaks down for tunnelling via YSR states by resonant Andreev reflections. We develop an improved theoretical description that is in excellent agreement with the data. Our results establish photon-assisted tunnelling as a powerful tool to analyse tunnelling processes at the atomic scale, which should be particularly informative for unconventional and topological superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Colour maps of the dI/dV spectra of superconducting Pb–Pb junctions under high-frequency radiation at f = 40 GHz.
Fig. 2: Sketches of (resonant) Andreev processes and tunnelling spectra of YSR states in different transport regimes.
Fig. 3: Photon-assisted tunnelling into the YSR state under high-frequency irradiation.
Fig. 4: Photon-assisted resonant Andreev reflections with the YSR state.

Similar content being viewed by others

Data availability

All data included in the Supplementary Information are available at https://doi.org/10.17169/refubium-27301. Source data are provided with this paper.

Code availability

The code generated for the simulations is available at https://doi.org/10.17169/refubium-27301.

Change history

  • 04 November 2020

    The Supplementary Information file initially published online was corrupted and was replaced on 4th November.

References

  1. Balatsky, A. V., Vekhter, I. & Zhu, J. X. Impurity-induced states in conventional and unconventional superconductors. Rev. Mod. Phys. 78, 373–433 (2006).

    ADS  Google Scholar 

  2. Heinrich, B. W., Pascual, J. I. & Franke, K. J. Single magnetic adsorbates on s-wave superconductors. Prog. Surf. Sci. 93, 1–19 (2018).

    ADS  Google Scholar 

  3. Sauls, J. A. Andreev bound states and their signatures. Phil. Trans. R. Soc. A 376, 20180140 (2018).

    ADS  MathSciNet  Google Scholar 

  4. Lutchyn, R. M. et al. Majorana zero modes in superconductor–semiconductor heterostructures. Nat. Rev. Mater. 3, 52–68 (2018).

    ADS  Google Scholar 

  5. Deacon, R. S. et al. Tunneling spectroscopy of Andreev energy levels in a quantum dot coupled to a superconductor. Phys. Rev. Lett. 104, 076805 (2010).

    ADS  Google Scholar 

  6. Franke, K. J., Schulze, G. & Pascual, J. I. Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332, 940–944 (2011).

    ADS  Google Scholar 

  7. Lee, E. J. et al. Spin-resolved Andreev levels and parity crossings in hybrid superconductor–semiconductor nanostructures. Nat. Nanotechnol. 9, 79–84 (2014).

    ADS  Google Scholar 

  8. Jellinggaard, A., Grove-Rasmussen, K., Madsen, M. H. & Nygård, J. Tuning Yu–Shiba–Rusinov states in a quantum dot. Phys. Rev. B 94, 064520 (2016).

    ADS  Google Scholar 

  9. Lee, E. J. H. et al. Scaling of subgap excitations in a superconductor–semiconductor nanowire quantum dot. Phys. Rev. B 95, 180502 (2017).

    ADS  Google Scholar 

  10. Schneider, L. et al. Magnetism and in-gap states of 3d transition metal atoms on superconducting Re. npj Quantum Mater. 4, 42 (2019).

    ADS  Google Scholar 

  11. Liebhaber, E. et al. Yu–Shiba–Rusinov states in the charge-density modulated superconductor NbSe2. Nano Lett. 20, 339–344 (2020).

    ADS  Google Scholar 

  12. Bretheau, L., Girit, Ç. Ö., Pothier, H., Esteve, D. & Urbina, C. Exciting Andreev pairs in a superconducting atomic contact. Nature 499, 312–315 (2013).

    ADS  Google Scholar 

  13. Zazunov, A., Shumeiko, V. S., Bratus’, E. N., Lantz, J. & Wendin, G. Andreev level qubit. Phys. Rev. Lett. 90, 087003 (2003).

    ADS  Google Scholar 

  14. Chtchelkatchev, N. M. & Nazarov, Y. V. Andreev quantum dots for spin manipulation. Phys. Rev. Lett. 90, 226806 (2003).

    ADS  Google Scholar 

  15. Janvier, C. et al. Coherent manipulation of Andreev states in superconducting atomic contacts. Science 349, 1199–1202 (2015).

    ADS  Google Scholar 

  16. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131–136 (2001).

    ADS  Google Scholar 

  17. Yazdani, A., Jones, B. A., Lutz, C. P., Crommie, M. F. & Eigler, D. M. Probing the local effects of magnetic impurities on superconductivity. Science 275, 1767–1770 (1997).

    Google Scholar 

  18. Ji, S.-H. et al. High-resolution scanning tunneling spectroscopy of magnetic impurity induced bound states in the superconducting gap of Pb thin films. Phys. Rev. Lett. 100, 226801 (2008).

    ADS  Google Scholar 

  19. Ménard, G. C. et al. Coherent long-range magnetic bound states in a superconductor. Nat. Phys. 11, 1013–1016 (2015).

    Google Scholar 

  20. Choi, D.-J. et al. Mapping the orbital structure of impurity bound states in a superconductor. Nat. Commun. 8, 15175 (2017).

    ADS  Google Scholar 

  21. Ruby, M. et al. Tunneling processes into localized subgap states in superconductors. Phys. Rev. Lett. 115, 087001 (2015).

    ADS  Google Scholar 

  22. Albrecht, S. M. et al. Transport signatures of quasiparticle poisoning in a Majorana island. Phys. Rev. Lett. 118, 137701 (2017).

    ADS  Google Scholar 

  23. Josephson, B. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    ADS  MATH  Google Scholar 

  24. Naaman, O., Teizer, W. & Dynes, R. C. Fluctuation dominated Josephson tunneling with a scanning tunneling microscope. Phys. Rev. Lett. 87, 097004 (2001).

    ADS  Google Scholar 

  25. Bastiaans, K. M. et al. Imaging doubled shot noise in a Josephson scanning tunneling microscope. Phys. Rev. B 100, 104506 (2019).

    ADS  Google Scholar 

  26. Schrieffer, J. R. & Wilkins, J. W. Two-particle tunneling processes between superconductors. Phys. Rev. Lett. 10, 17–20 (1963).

    ADS  MATH  Google Scholar 

  27. Taylor, B. N. & Burstein, E. Excess currents in electron tunneling between superconductors. Phys. Rev. Lett. 10, 14–17 (1963).

    ADS  Google Scholar 

  28. Andreev, A. F. The thermal conductivity of the intermediate state in superconductors. Sov. Phys. JETP 19, 1228–1231 (1964).

    Google Scholar 

  29. Ternes, M. et al. Subgap structure in asymmetric superconducting tunnel junctions. Phys. Rev. B 74, 132501 (2006).

    ADS  Google Scholar 

  30. Tien, P. K. & Gordon, J. P. Multiphoton process observed in the interaction of microwave fields with the tunneling between superconductor films. Phys. Rev. 129, 647–651 (1963).

    ADS  Google Scholar 

  31. Falci, G., Bubanja, V. & Schön, G. Quasiparticle and Cooper pair tunneling in small capacitance Josephson junctions. Z. Phys. B 85, 451–458 (1991).

    ADS  Google Scholar 

  32. Roychowdhury, A., Dreyer, M., Anderson, J. R., Lobb, C. J. & Wellstood, F. C. Microwave photon-assisted incoherent Cooper-pair tunneling in a Josephson STM. Phys. Rev. Appl. 4, 034011 (2015).

    ADS  Google Scholar 

  33. Kot, P. et al. Microwave-assisted tunneling and interference effects in superconducting junctions under fast driving signals. Phys. Rev. B 101, 134507 (2020).

    ADS  Google Scholar 

  34. Randeria, M. T., Feldman, B. E., Drozdov, I. K. & Yazdani, A. Scanning Josephson spectroscopy on the atomic scale. Phys. Rev. B 93, 161115 (2016).

    ADS  Google Scholar 

  35. Farinacci, L. et al. Tuning the coupling of an individual magnetic impurity to a superconductor: quantum phase transition and transport. Phys. Rev. Lett. 121, 196803 (2018).

    ADS  Google Scholar 

  36. Brand, J. et al. Electron and Cooper-pair transport across a single magnetic molecule explored with a scanning tunneling microscope. Phys. Rev. B 97, 195429 (2018).

    ADS  Google Scholar 

  37. Chauvin, M. et al. Superconducting atomic contacts under microwave irradiation. Phys. Rev. Lett. 97, 067006 (2006).

    ADS  Google Scholar 

  38. Ruby, M., Peng, Y., von Oppen, F., Heinrich, B. W. & Franke, K. J. Orbital picture of Yu–Shiba–Rusinov multiplets. Phys. Rev. Lett. 117, 186801 (2016).

    ADS  Google Scholar 

  39. Jehl, X., Sanquer, M., Calemczuk, R. & Mailly, D. Detection of doubled shot noise in short normal-metal/ superconductor junctions. Nature 405, 50–53 (2000).

    ADS  Google Scholar 

  40. Hoss, T. et al. Multiple Andreev reflection and giant excess noise in diffusive superconductor/normal-metal/superconductor junctions. Phys. Rev. B 62, 4079–4085 (2000).

    ADS  Google Scholar 

  41. Dubouchet, T. et al. Collective energy gap of preformed Cooper pairs in disordered superconductors. Nat. Phys. 15, 233–236 (2019).

    Google Scholar 

  42. Law, K. T., Lee, P. A. & Ng, T. K. Majorana fermion induced resonant Andreev reflection. Phys. Rev. Lett. 103, 237001 (2009).

    ADS  Google Scholar 

  43. Flensberg, K. Tunneling characteristics of a chain of Majorana bound states. Phys. Rev. B 82, 180516 (2010).

    ADS  Google Scholar 

  44. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    ADS  Google Scholar 

  45. Ruby, M. et al. End states and subgap structure in proximity-coupled chains of magnetic adatoms. Phys. Rev. Lett. 115, 197204 (2015).

    ADS  Google Scholar 

  46. Pawlak, R. et al. Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. npj Quantum Inf. 2, 16035 (2016).

    ADS  Google Scholar 

  47. Feldman, B. E. et al. High-resolution studies of the Majorana atomic chain platform. Nat. Phys. 13, 286–291 (2017).

    Google Scholar 

  48. Jeon, S. et al. Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772–776 (2017).

    ADS  Google Scholar 

  49. Kim, H. et al. Toward tailoring Majorana bound states in artificially constructed magnetic atom chains on elemental superconductors. Sci. Adv. 4, eaar5251 (2018).

    ADS  Google Scholar 

  50. Ruby, M., Heinrich, B. W., Pascual, J. I. & Franke, K. J. Experimental demonstration of a two-band superconducting state for lead using scanning tunneling spectroscopy. Phys. Rev. Lett. 114, 157001 (2015).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Flensberg for fruitful discussions and C. Lotze for technical support. We gratefully acknowledge funding by the European Research Council under the Consolidator Grant ‘NanoSpin’, by Deutsche Forschungsgemeinschaft and Agence Nationale de la Recherche under grant ‘JOSPEC’ and by CRCs 183 and 910 of Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Contributions

O.P. and N.B. designed and constructed the high-frequency experimental set-up and carried out the experiments with help from J.R.S. and G.R. O.P., S.A.G. and L.M. performed the simulations. O.P., S.A.G., F.v.O. and K.J.F. analysed the data. K.J.F. conceived the experiment, with the help of C.B.W. K.J.F. guided the experiment and F.v.O. guided the theory. O.P., F.v.O. and K.J.F. wrote the paper with input from all co-authors. All authors discussed the results.

Corresponding author

Correspondence to Katharina J. Franke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Milan Allan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Table 1, experimental details, theoretical considerations and comparison of experiment and theory.

Source data

Source Data Fig. 1

Original data.

Source Data Fig. 2

Original data.

Source Data Fig. 3

Original data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, O., Bogdanoff, N., Acero González, S. et al. Resonant Andreev reflections probed by photon-assisted tunnelling at the atomic scale. Nat. Phys. 16, 1222–1226 (2020). https://doi.org/10.1038/s41567-020-0972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-0972-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing