Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy

Abstract

The growth of sodium dendrites and the associated solid electrolyte interface (SEI) layer is a critical and fundamental issue influencing the safety and cycling lifespan of sodium batteries. In this work, we use in-situ 23Na magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) techniques, along with an innovative analytical approach, to provide space-resolved and quantitative insights into the formation and evolution of sodium metal microstructures (SMSs; that is, dendritic and mossy Na metal) during the deposition and stripping processes. Our results reveal that the growing SMSs give rise to a linear increase in the overpotential until a transition voltage of 0.15 V is reached, at which point violent electrochemical decomposition of the electrolyte is triggered, leading to the formation of mossy-type SMSs and rapid battery failure. In addition, we determined the existence of NaH in the SEI on sodium metal with ex-situ NMR results. The poor electronic conductivity of NaH is beneficial for the growth of a stable SEI on sodium metal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical performances and morphologies of Na metals cycled with different electrolytes.
Fig. 2: In-situ 23Na metal MRI images of the Na || Cu batteries during the first cycle in F0 and F2 electrolytes.
Fig. 3: In-situ 23Na metal MRI images of the Na || Cu batteries.
Fig. 4: The growth of SMSs observed by operando NMR.
Fig. 5: The correlation between the SMSs and overpotential.
Fig. 6: Ex-situ NMR characterization of SEI species.
Fig. 7: The correlation between overpotential and SMSs with two contrasting SEI features derived from F0 and F2 electrolytes, and the corresponding morphological evolution schematics.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Lee, B., Paek, E., Mitlin, D. & Lee, S. W. Sodium metal anodes: emerging solutions to dendrite growth. Chem. Rev. 119, 5416–5460 (2019).

    Article  CAS  Google Scholar 

  2. Zhao, Y. et al. In situ formation of highly controllable and stable Na3PS4 as a protective layer for Na metal anode. J. Mater. Chem. A 7, 4119–4125 (2019).

    Article  CAS  Google Scholar 

  3. Zheng, J. et al. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 3, 315–321 (2018).

    Article  CAS  Google Scholar 

  4. Luo, W. et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode. Nano Lett. 17, 3792–3797 (2017).

    Article  CAS  Google Scholar 

  5. Liu, S. et al. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 17, 5862–5868 (2017).

    Article  CAS  Google Scholar 

  6. Zhou, W., Li, Y., Xin, S. & Goodenough, J. B. Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 3, 52–57 (2017).

    Article  CAS  Google Scholar 

  7. Rodriguez, R. et al. In situ optical imaging of sodium electrodeposition: effects of fluoroethylene carbonate. ACS Energy Lett. 2, 2051–2057 (2017).

    Article  CAS  Google Scholar 

  8. Li, X., Zhao, L., Li, P., Zhang, Q. & Wang, M.-S. In-situ electron microscopy observation of electrochemical sodium plating and stripping dynamics on carbon nanofiber current collectors. Nano Energy 42, 122–128 (2017).

    Article  CAS  Google Scholar 

  9. Jin, Y. et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J. Am. Chem. Soc. 139, 14992–15004 (2017).

    Article  CAS  Google Scholar 

  10. Gao, L. et al. Revealing the chemistry of an anode-passivating electrolyte salt for high rate and stable sodium metal batteries. J. Mater. Chem. A 6, 12012–12017 (2018).

    Article  CAS  Google Scholar 

  11. Yu, C. et al. Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid–electrolyte–electrode interface. Nat. Commun. 8, 1086 (2017).

    Article  Google Scholar 

  12. Bhattacharyya, R. et al. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010).

    Article  CAS  Google Scholar 

  13. Chandrashekar, S. et al. 7Li MRI of Li batteries reveals location of microstructural lithium. Nat. Mater. 11, 311–315 (2012).

    Article  CAS  Google Scholar 

  14. Chang, H. J. et al. Correlating microstructural lithium metal growth with electrolyte salt depletion in lithium batteries using 7Li MRI. J. Am. Chem. Soc. 137, 15209–15216 (2015).

    Article  CAS  Google Scholar 

  15. Kim, H. et al. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives. Electrochim. Acta 136, 157–165 (2014).

    Article  CAS  Google Scholar 

  16. Komaba, S. et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011).

    Article  CAS  Google Scholar 

  17. Iermakova, D. I., Dugas, R., Palacin, M. R. & Ponrouch, A. On the comparative stability of Li and Na metal anode interfaces in conventional alkyl carbonate electrolytes. J. Electrochem. Soc. 162, A7060–A7066 (2015).

    Article  CAS  Google Scholar 

  18. Seh, Z. W., Sun, J., Sun, Y. & Cui, Y. A highly reversible room-temperature sodium metal anode. ACS Cent. Sci. 1, 449–455 (2015).

    Article  CAS  Google Scholar 

  19. Cao, R. et al. Enabling room temperature sodium metal batteries. Nano Energy 30, 825–830 (2016).

    Article  CAS  Google Scholar 

  20. Choudhury, S. et al. Designing solid-liquid interphases for sodium batteries. Nat. Commun. 8, 898 (2017).

    Article  Google Scholar 

  21. Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

    Article  CAS  Google Scholar 

  22. Yui, Y., Hayashi, M. & Nakamura, J. In situ microscopic observation of sodium deposition/dissolution on sodium electrode. Sci. Rep. 6, 22406 (2016).

    Article  CAS  Google Scholar 

  23. Zhao, C. et al. Advanced Na metal anodes. J. Energy Chem. 27, 1584–1596 (2018).

    Article  Google Scholar 

  24. Wu, B., Lochala, J., Taverne, T. & Xiao, J. The interplay between solid electrolyte interface (SEI) and dendritic lithium growth. Nano Energy 40, 34–41 (2017).

    Article  CAS  Google Scholar 

  25. Bayley, P. M., Trease, N. M. & Grey, C. P. Insights into electrochemical sodium metal deposition as probed with in situ 23Na NMR. J. Am. Chem. Soc. 138, 1955–1961 (2016).

    Article  CAS  Google Scholar 

  26. Cheng, X.-B., Yan, C., Zhang, X.-Q., Liu, H. & Zhang, Q. Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 3, 1564–1570 (2018).

    Article  CAS  Google Scholar 

  27. Reeve, Z. E. et al. Detection of electrochemical reaction products from the sodium-oxygen cell with solid-state 23Na NMR spectroscopy. J. Am. Chem. Soc. 139, 595–598 (2017).

    Article  CAS  Google Scholar 

  28. Wang, D. et al. The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J. Mater. Chem. A 2, 20271–20279 (2014).

    Article  CAS  Google Scholar 

  29. Tian, Y. et al. Reactivity-guided interface design in Na metal solid-state batteries. Joule 3, 1037–1050 (2019).

    Article  CAS  Google Scholar 

  30. Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Article  Google Scholar 

  31. Jin, Y. et al. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 140, 9854–9867 (2018).

    Article  CAS  Google Scholar 

  32. Bray, J. M. et al. Operando visualisation of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imaging. Nat. Commun. 11, 2083 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by National Key Research and Development Program of China (grant nos. 2018YFB0905400 and 2016YFB0901500) and National Natural Science Foundation of China (grant nos. 21935009, 21761132030 and 21603231). R.F. acknowledges support from the National High Magnetic Field Laboratory, which is supported by NSF Cooperative Agreement DMR-1644779 and the State of Florida. We acknowledge R. Liu and J. Dahn for helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., Y.X. and G. Zhong proposed and planned the project. Y.Y. and G. Zhong supervised the project. Y.X., X.L., S.Y. and Z.L. carried out the NMR measurements. Y.X. and G. Zheng prepared the in-situ cells. S.C. and H.H. performed the SEM measurements and K.Z. and J.Z. performed and analysed XPS experiments. M.L. conducted the theoretical calculations. R.F. and J.W. assisted in data analysis. Y.X. and G. Zhong wrote the manuscript. Y.J. and Y.L. contributed to the discussion and revision of the manuscript.

Corresponding authors

Correspondence to Guiming Zhong or Yong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1 and 2, discussion and refs. 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Zheng, G., Liang, Z. et al. Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nat. Nanotechnol. 15, 883–890 (2020). https://doi.org/10.1038/s41565-020-0749-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-0749-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing