Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 24, 2020

Layered calcium hydrogen selenite chlorides Ca(HSeO3)Cl and Ca(HSeO3)Cl(H2O), the first halides obtained in СaCl2–H2SeO3–H2O system

  • Mishel R. Markovski , Oleg I. Siidra EMAIL logo , Dmitri O. Charkin and Vasili Yu Grishaev

Abstract

Synthesis, crystal structures and IR spectra of the first representatives of calcium hydrogen selenite halides are reported. Colourless prismatic crystals of calcium hydrogen selenite chloride Ca(HSeO3)Cl and corresponding hydrated analogue Ca(HSeO3)Cl(H2O) were produced upon evaporation of aqueous solutions. Ca(HSeO3)Cl is monoclinic, P21/c, a = 7.0031(11) Å, b = 7.7336(12) Å, c = 8.5024(13) Å, β = 109.889(3)°, V = 433.02(12) Å3, R1 = 0.039. Ca(HSeO3)Cl(H2O) is orthorhombic, Pbca, a = 6.222(4) Å, b = 10.413(7) Å, c = 16.875(10) Å, V = 1093.3 (12) Å3, R1 = 0.041. Ca(HSeO3)Cl and Ca(HSeO3)Cl(H2O) represent new structure types. In both structures, Ca2+ cations adopt mixed-ligand environments formed by oxygen atoms of hydrogen selenite anions (and water molecules for Ca(HSeO3)Cl(H2O)) and chloride ions. Both structures are layered. The crystal structure of Ca(HSeO3)Cl(H2O) demonstrates a rare phenomenon of hydrogen-bonded assembly of water and chloride in the interlayer space.


Corresponding author: Oleg I. Siidra, Department of Crystallography, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia; and Kola Science Center, Russian Academy of Sciences, Apatity, 184200, Murmansk Region, Russia, E-mail: o.siidra@spbu.ru

Acknowledgements

O.I.S. thanks SPbSU for internal grant COLLAB2019_1 # 38376641. Technical support by the SPbSU X-ray Diffraction and Microscopy and Microanalysis Resource Centers is gratefully acknowledged.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Zimmermann, I., Johnsson, M. A synthetic route toward layered materials: introducing stereochemically active lone-pairs into transition metal oxohalides. Cryst. Growth Des. 2014, 14, 5252. https://doi.org/10.1021/cg5010374.Search in Google Scholar

2. Tosoni, S., Doll, K., Ugliengo, P. Hydrogen bond in layered materials:  structural and vibrational properties of kaolinite by a periodic B3LYP approach. Chem. Mater. 2006, 18, 2135–2143. https://doi.org/10.1021/cm060227e.Search in Google Scholar

3. Effenberger, H., Miletich, R., Pertlik, F. Structure of dilead(II) hydrogenarsenate(III) dichloride. Acta Crystallogr. 1990, C46, 541–543. https://doi.org/10.1107/s0108270189008863.Search in Google Scholar

4. Siidra, O. I., Chukanov, N. V., Pekov, I. V., Krivovichev, S. V., Magganas, A., Katerinopoulos, A., Voudouris, P. Pb2(AsO2OH)Cl2, a new phase from the Lavrion ancient slags, Greece: occurrence and characterization. Miner. Mag. 2012, 76, 597–602. https://doi.org/10.1180/minmag.2012.076.3.10.Search in Google Scholar

5. Harrison, W. T. A., Johnston, M. G. Syntheses and structures of two selenite chloride hydrates: Co(HSeO3)Cl·3H2O and Cu(HSeO3)Cl·2H2O. Z. Anorg. Allg. Chem. 2000, 626, 2487–2490. https://doi.org/10.1107/S1600536803006378.Search in Google Scholar

6. Johnston, M. G., Harrison, W. T. A. Cobalt hydrogen selenite chloride dihydrate, Co(HSeO3)Cl·2H2O. Acta Crystallogr. 2003, E59, i62–i64. https://doi.org/10.1107/s1600536803006378.Search in Google Scholar

7. Kovrugin, V. M., Krivovichev, S. V., Mentré, O., Colmont, M. [NaCl][Cu(HSeO3)2], NaCl-intercalated Cu(HSeO3)2: synthesis, crystal structure and comparison with related compounds. Z. Kristallogr. Cryst. Mater. 2015, 230, 573–577. https://doi.org/10.1515/zkri-2015-1849.Search in Google Scholar

8. Pasha, I., Choudhury, A., Rao, C. N. R. An organically templated open-framework cadmium selenite. Solid State Sci. 2003, 5, 257–262. https://doi.org/10.1016/s1293-2558(02)00100-0.Search in Google Scholar

9. Spirovski, F., Wagener, M., Stefov, V., Engelen, B. Crystal structures of rubidium zinc bis(hydrogenselenate(IV)) chloride RbZn(HSeO3)2Cl, and rubidium zinc bis(hydrogenselenate(IV)) bromide RbZn(HSeO3)2Br. Z. Kristallogr. New Cryst. Struct. 2007, 222, 91–92. https://doi.org/10.1524/ncrs.2007.0037.Search in Google Scholar

10. Trombe, J. C., Lafront, A. M., Bonvoisin, J. Synthesis, structure and magnetic measurement of a new layered copper hydrogenselenite: (Cu(HSeO3)2)·((NH4)Cl). Inorg. Chim. Acta 1997, 262, 47–51. https://doi.org/10.1016/s0020-1693(97)05501-1.Search in Google Scholar

11. Markovski, M. R., Charkin, D. O., Siidra, O. I., Nekrasova, D. O. Copper hydroselenite nitrates (A+NO3)n[Cu(HSeO3)2] (A = Rb+, Cs+ and Tl+, n = 1, 2) related to Ruddlesden – Popper phases. Z. Kristallogr. Cryst. Mater. 2019, 234, 749–756. https://doi.org/10.1515/zkri-2019-0036.Search in Google Scholar

12. Charkin, D. O., Markovski, M. R., Siidra, O. I., Nekrasova, D. O., Grishaev, V. Y. Influence of the alkali cation size on the Cu2+ coordination environments in (AX)[Cu(HSeO3)2] (A = Na, K, NH4, Rb, Cs; X = Cl, Br) layered copper hydrogen selenite halides. Z. Kristallogr. Cryst. Mater. 2019, 234, 739–747. https://doi.org/10.1515/zkri-2019-0042.Search in Google Scholar

13. Lafront, A. M., Trombe, J. C., Bonvoisin, J. Layered hydrogenselenites'. II. Synthesis, structure studies and magnetic properties of a novel series of bimetallic hydrogenselenites: (Cu(HSeO3)2MCl2(H2O)4), M(II) = Mn, Co, Ni, Cu, Zn. Inorganica Chim. Acta 1995, 238, 15–22. https://doi.org/10.1016/0020-1693(95)04659-W.Search in Google Scholar

14. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, С71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

15. Leskelä, M., Valkonen, J., Leskelä, T. The crystal structure, thermal behaviour and IR spectrum of сadmium hydrogenselenite nitrate. Acta Chem. Scand. 1984, A38, 233–239. https://doi.org/10.3891/acta.chem.scand.38a-0233.Search in Google Scholar

16. Valkonen, J. Crystal structures, infrared-spectra, and thermal behavior of calcium hydrogenselenite monohydrate Ca(HSeO3)2H2O, and dicalcium diselenite bis(hydrogenselenite) Ca2(HSeO3)2(Se2O5). J. Solid State Chem. 1986, 65, 363–369. https://doi.org/10.1016/0022-4596(86)90109-x.Search in Google Scholar

17. Leclaire, A., Borel, M. M. Le dichlorure de calcium dihydrate. Acta Crystallogr. 1977, B33, 1608–1610. https://doi.org/10.1107/s0567740877006645.Search in Google Scholar

18. Leclaire, A., Borel, M. M. Liaisons hydrogene et coordination du calcium dans les cristaux de CaCl2(H2O)4 alpha. Acta Crystallogr. 1979, B35, 585–588. https://doi.org/10.1107/s0567740879004209.Search in Google Scholar

19. Gagné, O. C., Hawthorne, F. C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. 2015, B71, 562–578. https://doi.org/10.1107/s2052520615016297.Search in Google Scholar

20. Ghosh, A. K., Ghoshal, D., Ribas, J., Mostafa, G., Chaudhuri, N. R. Hydrogen-bonded, assembly of water and chloride in a 3D supramolecular host. Cryst. Growth Des. 2006, 6, 36–39. https://doi.org/10.1021/cg050423i.Search in Google Scholar

21. Allerhand, A., Schleyer, P. v. R. Halide anions as proton acceptors in hydrogen bonding. J. Am. Chem. Soc. 1963, 85, 1233–1237. https://doi.org/10.1021/ja00892a005.Search in Google Scholar

Received: 2020-05-07
Accepted: 2020-06-29
Published Online: 2020-07-24
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2020-0054/html
Scroll to top button