Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 27, 2020

Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2

  • Jan P. Scheifers and Boniface P. T. Fokwa EMAIL logo

Abstract

The binary Ru4Si3 remained the only compound in its structure type for more than 60 years. Herein, we report the synthesis and crystal structure of the first ternary silicide (Ir4−xCuSi2) in the Ru4Si3-type structure, which can be derived from RuSi by unit cell twinning. According to single-crystal X-ray diffraction, Ir vacancies exist along the twin boundary. Ir4−xCuSi2 exhibits a distorted structure compared to Ru4Si3, as the larger Cu selectively replaces Si on only one of three possible sites, leading to zigzag chains with short Cu–Cu distances. Furthermore, DFT calculations show that the rigid band approximation does not apply to this structure type, but the similarities of electronic structures of the ideal binary and ternary compositions suggest that this structure type can accommodate a large variety of elemental substitutions without a significant change of its electronic structure if a similar valence electron count is maintained, hinting at a potentially rich substitutional chemistry.


Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.



Corresponding author: Boniface P. T. Fokwa, Department of Chemistry, University of California, Riverside, CA92521, USA, E-mail:

Acknowledgments

The authors would like to acknowledge the financial support by UC Riverside (Dissertation Year Award for J.P.S and start-up funding for B.P.T.F). Furthermore, the authors thank Sarah Hoang, Alexis Puente, Nicole Zuno and Kellie Albright, who are students of the Valley View Highschool in Moreno Valley, CA, for their help preparing the samples and sealing them in quartz tubes. Finally, the authors acknowledge the support by the San Diego Supercomputing Center, where the DFT calculations were carried out.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: UC Riverside (Dissertation Year Award for J.P.S and start-up funding for B.P.T.F).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Engstroem, I., Johnsson, T. The crystal structure of Ru4Si3. Ark. Kemi. 1968, 30, 141–147. https://doi.org/10.1016/0022-4596(75)90363-1.Search in Google Scholar

2. Andersson, S., Hyde, B. G. Twinning on the unit cell level as a structure-building operation in the solid state. J. Solid State Chem. 1974, 9, 92–101. https://doi.org/10.1016/0022-4596(74)90059-0.Search in Google Scholar

3. Hyde, B. G., Andersson, S., Bakker, M., Plug, C. M., O’Keeffe, M. The (twin) composition plane as an extended defect and structure-building entity in crystals. Prog. Solid State Chem. 1979, 12, 273–327. https://doi.org/10.1016/0079-6786(79)90002-5.Search in Google Scholar

4. Parthé, E., Ed. Modern Perspectives in Inorganic Crystal Chemistry. Netherlands: Springer, 1992.10.1007/978-94-011-2726-4Search in Google Scholar

5. Mielke, A., Rieger, J. J., Scheidt, E. W., Stewart, G. R. Important role of coherence for the heavy-fermion state in CeCu2Si2. Phys. Rev. B 1994, 49, 10051–10053. https://doi.org/10.1103/physrevb.49.10051.Search in Google Scholar

6. Eriksson, T., Bergqvist, L., Burkert, T., Felton, S., Tellgren, R., Nordblad, P., Eriksson, O., Andersson, Y. Cycloidal magnetic order in the compound IrMnSi. Phys. Rev. B 2005, 71, https://doi.org/10.1103/physrevb.71.174420.Search in Google Scholar

7. Eriksson, T., Lizarraga, R., Felton, S., Bergqvist, L., Andersson, Y., Nordblad, P., Eriksson, O. Crystal and magnetic structure of Mn3IrSi. Phys. Rev. B 2004, 69, 1–7. https://doi.org/10.1103/physrevb.69.054422.Search in Google Scholar

8. Sales, B. C., Jones, E. C., Chakoumakos, B. C., Fernandez-Baca, J. A., Harmon, H. E., Sharp, J. W., Volckmann, E. H. Magnetic, transport, and structural properties of Fe1-xIrxSi. Phys. Rev. B 1994, 50, 8207–8213. https://doi.org/10.1103/physrevb.50.8207.Search in Google Scholar

9. Kimmel, G. On the U3Si (Doc) crystallographic type. J. Less Common Met. 1978, 59, P83–P86. https://doi.org/10.1016/0022-5088(78)90136-4.Search in Google Scholar

10. Bhan, S., Schubert, K. Zum Aufbau der Systeme Kobalt-Germanium, Rhodium-Silizium sowie einiger verwandter Legierungen. Z. Metallkd. 1960, 51, 327–339.10.1515/ijmr-1960-510604Search in Google Scholar

11. Schubert, K., Bhan, S., Burkhardt, W., Gohle, R., Meissner, H. G., Pötzschke, M., Stolz, E. Einige strukturelle Ergebnisse an metallischen Phasen (5). Naturwissenschaften 1960, 47, 303. https://doi.org/10.1007/bf00600960.Search in Google Scholar

12. Finnie, L. N. Structures and compositions of the silicides of ruthenium, osmium, rhodium and iridium. J. Less Common Met. 1962, 4, 24–34. https://doi.org/10.1016/0022-5088(62)90055-3.Search in Google Scholar

13. Andersson, S., Leygraf, C., Johnsson, T. The structure of defect Ru4Si3. J. Solid State Chem. 1975, 14, 78–84. https://doi.org/10.1016/0022-4596(75)90363-1.Search in Google Scholar

14. Weitzer, F., Rogl, P., Schuster, J. C. X-ray investigations in the systems ruthenium-silicon and ruthenium-silicon-nitrogen. Z. Metallkd. 1988, 79, 154–156. https://doi.org/10.1002/chin.198822019.Search in Google Scholar

15. Straumanis, M. E., Yu, L. S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu–In α phase. Acta Crystallogr. 1969, 25A, 676–682. https://doi.org/10.1107/s0567739469001549.Search in Google Scholar

16. Klünter, W., Jung, W. Das Kupfer-Iridiumborid Cu2Ir4B3 mit einer vom ZnIr4B3-Typ abgeleiteten Schichtstruktur. Z. Anorg. Allg. Chem. 2000, 626, 502–505. https://doi.org/10.1002/(sici)1521-3749(200002)626:2<502::aid-zaac502>3.0.co;2-u.10.1002/(SICI)1521-3749(200002)626:2<502::AID-ZAAC502>3.0.CO;2-USearch in Google Scholar

17. Weller, M. T., Lines, D. R. Structure and oxidation state relationships in ternary copper oxides. J. Solid State Chem. 1989, 82, 21–29. https://doi.org/10.1016/0022-4596(89)90217-x.Search in Google Scholar

18. Slater, J. C. Atomic radii in crystals. J. Chem. Phys. 1964, 41, 3199–3204. https://doi.org/10.1063/1.1725697.Search in Google Scholar

19. Rodriguez-Carvajal, J. FullProf: a program for Rietveld refinement and profile matching analysis of complex powder diffraction patterns. In Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Vol. 127, 1990.Search in Google Scholar

20. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 1993, 192, 55–69. https://doi.org/10.1016/0921-4526(93)90108-i.Search in Google Scholar

21. Roisnel, T., Rodriguez-Carvajal, J. WinPLOTR: a Windows tool for powder diffraction patterns analysis. In Materials Science Forum, Proceedings of the Seventh European Powder Diffraction Conference (EPDIC 7); Delhez, R., Mittenmeijer, E. J., Eds., 2000; 118–123.10.4028/www.scientific.net/MSF.378-381.118Search in Google Scholar

22. Clark, R. C., Reid, J. S. The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr. 1995, 51A, 887–897. https://doi.org/10.1107/s0108767395007367.Search in Google Scholar

23. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, 64A, 112–122. https://doi.org/10.1107/s0108767307043930.Search in Google Scholar

24. Farrugia, L. J. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr. 1999, 32, 837–838. https://doi.org/10.1107/s0021889899006020.Search in Google Scholar

25. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854. https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

26. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr. 2003, 36, 7–13. https://doi.org/10.1107/s0021889802022112.Search in Google Scholar

27. Kresse, G., Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar

28. Kresse, G., Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. https://doi.org/10.1016/0927-0256(96)00008-0.Search in Google Scholar

29. Kresse, G., Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

30. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. https://doi.org/10.1103/physrevb.50.17953.Search in Google Scholar PubMed

31. Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

32. Monkhorst, H. J., Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

Received: 2020-06-25
Accepted: 2020-07-06
Published Online: 2020-07-27
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.5.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2020-0061/html
Scroll to top button