Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 27, 2020

Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited

  • Sven Umlauf , Markus Weber and Robert Glaum EMAIL logo

Abstract

The monoclinic α-polymorph of (VIVO)(PO3)2 is obtained reproducibly by reaction of V2O5 and H3PO4 (85%) (Au crucible, 380 °C, 4 d). Its crystal structure was refined from X-ray single-crystal data [C2/c, Z = 4, a = 15.1038(7) Å, b = 4.193(2) Å, c = 9.573(9) Å, β = 126.45(3), R1 = 0.052, wR2 = 0.189 for 976 unique reflections with Fo > (Fo), 48 variables]. A single-phase powder of the β-polymorph is obtained by the reaction of V2O5, H3PO4 (85%) and oxalic acid, evaporating the mixture, and subsequent annealing (porcelain crucible, 800 °C in air, 2 d). Single crystals of β-(VIVO)(PO3)2 were grown in a sealed silica ampoule with chlorine as mineralizer. The crystal structure of the orthorhombic (pseudo-tetragonal) β-polymorph was refined from X-ray single-crystal data [pseudo-merohedral twin, Fdd2, Z = 8, a = 15.536(2) Å, b = 15.586(2) Å, c = 4.2611(5) Å, R1 = 0.032, wR2 = 0.068 for 1072 unique reflections with Fo > (Fo), 50 variables]. Earlier reports on a tetragonal polymorph with unusual geometric structure of the [(V≡O)O5] polyhedron are corrected.


Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.



Corresponding author: Robert Glaum, Institute of Inorganic Chemistry, University of Bonn, 53113 Bonn, Germany, E-mail:

Acknowledgments

We thank Dr. Gregor Schnakenburg and Charlotte Rödde for the collection of the single crystal X-ray data and Dominik Offermanns (all University of Bonn) for the XRPD data of α- and β-VO(PO3)2.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Murashova, E. V., Chudinova, N. N. Kristallografiya 1994, 39, 145.Search in Google Scholar

2. Krasnikov, V. V., Konstant, Z. A. Izv. Akad. Nauk. SSSR - Neorganicheskiye Mater. 1979, 15, 2164.Search in Google Scholar

3. Bärnighausen, H. Match 1980, 9, 139.Search in Google Scholar

4. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen. Anwendungen der kristallographischen Gruppentheorie in der Kristallchemie; Vieweg + Teubner: Wiesbaden, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar

5. Sheldrick, G. M. SHELX-97 (Includes SHELXS97, SHELXL97, CIFTAB) Programs for Crystal Structure Analysis (Release 97-2); Universität Göttingen: Göttingen, Germany, 1998.Search in Google Scholar

6. Achary, S. N., Patwe, S. J., Tyagi, A. K. J. Alloys Compd. 2008, 461, 474. https://doi.org/10.1016/j.jallcom.2007.07.011.Search in Google Scholar

7. Aroyo, M. I., Perez-Mato, J. M., Capillas, C., Kroumova, E., Ivantchev, S., Madariaga, G., Kirov, A., Wondratschek, H. Z. Kristallogr. Cryst. Mater. 2006, 221, 15–27. https://doi.org/10.1524/zkri.2006.221.1.15.Search in Google Scholar

8. Aroyo, M. I., Kirov, A., Capillas, C., Perez-Mato, J. M., Wondratschek, H. Acta Crystallogr. 2006, A62, 115; https://doi.org/10.1107/s0108767305040286.Search in Google Scholar

9. Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R., Sawaya, M. R. Crystal Structure Refinement – A Crystallographer’s Guide to SHELXL; Intl. Union of Crystallogr., Oxford Univ. Press: Oxford, 2006.10.1093/acprof:oso/9780198570769.001.0001Search in Google Scholar

10. Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837; https://doi.org/10.1107/s0021889899006020.Search in Google Scholar

11. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74. https://doi.org/10.1107/S0021889877012898.Search in Google Scholar

12. Durif, A. Crystal Chemistry of Condensed Phosphates; Plenum Press: New York, 1995.10.1007/978-1-4757-9894-4Search in Google Scholar

13. Glaum, R. Neue Untersuchungen an wasserfreien Phosphaten der Übergangsmetalle. Thesis of Habilitation, University of Gießen: Gießen, Germany, 1999. https://geb.uni-giessen.de/geb/volltexte/1999/124/ (digital version; in German).Search in Google Scholar

14. Daidouh, A., Veiga, M. L., Pico, C. Solid State Ionics 1998, 106, 103–112; https://doi.org/10.1016/s0167-2738(97)00440-2.Search in Google Scholar

15. Wadewitz, C., Müller Buschbaum, H., Z. Naturforsch. 1996, 51, 929–933; https://doi.org/10.1515/znb-1996-0705.Search in Google Scholar

16. Putz, H., Brandenburg, K. Diamond – Crystal and Molecular Structure Visualization; Crystal Impact: Bonn, Germany, 2006; pp. 1979–2020.Search in Google Scholar

17. Putz, H. Match!, Crystal Impact: Bonn, 2015.Search in Google Scholar

18. Meyer, G., Soose, J. SOS – Program for Determination Of Lattice Parameters; University of Gießen: Gießen, Germany, 1980.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0037).


Received: 2020-04-03
Accepted: 2020-05-28
Published Online: 2020-07-27
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2020-0037/html
Scroll to top button