Skip to main content
Log in

On the strong exothermicity of fecal matter pyrolysis under an inert atmosphere

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Understanding the role of the exothermic pyrolysis is important for the design of reactors and gasifiers that seek to convert or even destroy fecal matter. In the present work, we reveal clear experimental evidence of fecal matter exothermic pyrolysis from human, pig, and chicken, under the conditions of differential scanning calorimetry. The results suggested that the strong exothermicity is related to the presence of inorganic elements in feces, Fe, Cu, Si, Pb, and Al, catalyzing the exothermic reactions, such as the partial fixed carbon oxidation and the inorganic reduction reactions. The pig feces presented the highest inorganic content, and the lowest fixed carbon content, 4.21 wt%. For all samples, the exothermicity of pyrolysis overcame endothermic reactions, leading to a maximum positive balance of 631.84 J/g. The pyrolysis efficiency reached values up to 10%. Based on the experimental evidence, a conceptual mechanism leading to exothermicity was drew for heterogeneous and homogeneous exothermic reactions affecting positively the overall energy balance of pyrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • Bao YM, Choct M, Iji P, Bruerton K (2010) Trace mineral interactions in broiler chicken diets. Br Poultry Sci 51(1):109–117

    Article  CAS  Google Scholar 

  • Barry D, Barbiero C, Briens C, Berruti F (2019) Pyrolysis as an economical and ecological treatment option for municipal sewage sludge. Biomass Bioenergy 122:472–480

    Article  CAS  Google Scholar 

  • Bharath G, Hai A, Rambabu K, Banat F, Jayaraman R, Taher H, Bastidas-Oyanedel JR, Ashraf MT, Schmidt JE (2020) Systematic production and characterization of pyrolysis-oil from date tree wastes for bio-fuel applications. Biomass Bioenergy 135:105523

    Article  CAS  Google Scholar 

  • Bittencourt FLF, Lourenço AB, Dalvi EA, Martins MF (2019) Thermodynamic assessment of human feces gasification: an experimental-based approach. SN Appl Sci 1(9):1077. https://doi.org/10.1007/s42452-019-1104-1

    Article  CAS  Google Scholar 

  • Boroson ML, Howard JB, Longwell JP, Peters WA (1989) Heterogeneous cracking of wood pyrolysis tars over fresh wood char surfaces. Energy Fuels 3(6):735–740

    Article  CAS  Google Scholar 

  • Çetinkaya S, Yürüm Y (2000) Oxidative pyrolysis of turkish lignites in air up to 500 c. Fuel Process Technol 67(3):177–189

    Article  Google Scholar 

  • Daouk E, Van de Steene L, Paviet F, Salvador S (2015) Thick wood particle pyrolysis in an oxidative atmosphere. Chem Eng Sci 126:608–615

    Article  CAS  Google Scholar 

  • Di Blasi C, Branca C, Sarnataro F, Gallo A (2014) Thermal runaway in the pyrolysis of some lignocellulosic biomasses. Energy Fuels 28(4):2684–2696

    Article  Google Scholar 

  • Di Blasi C, Branca C, Galgano A (2017) On the experimental evidence of exothermicity in wood and biomass pyrolysis. Energy Technol 5(1):19–29

    Article  Google Scholar 

  • Kilzer FJ, Broido A (1965) Speculations on the nature of cellulose pyrolysis. Pyrodynamics 2:151–163

    CAS  Google Scholar 

  • Kim TS, Oh S, Kim JY, Choi IG, Choi JW (2014) Study on the hydrodeoxygenative upgrading of crude bio-oil produced from woody biomass by fast pyrolysis. Energy 68:437–443

    Article  CAS  Google Scholar 

  • Lautenberger C, Fernandez-Pello C (2009) A model for the oxidative pyrolysis of wood. Combust Flame 156(8):1503–1513

    Article  CAS  Google Scholar 

  • Mayoral M, Izquierdo M, Andrés J, Rubio B (2001) Different approaches to proximate analysis by thermogravimetry analysis. Thermochim Acta 370(1–2):91–97

    Article  CAS  Google Scholar 

  • Mok WSL, Antal MJ Jr (1983a) Effects of pressure on biomass pyrolysis. I. Cellulose pyrolysis products. Thermochim Acta 68(2–3):155–164

    Article  CAS  Google Scholar 

  • Mok WSL, Antal MJ Jr (1983b) Effects of pressure on biomass pyrolysis. II. Heats of reaction of cellulose pyrolysis. Thermochim Acta 68(2–3):165–186

    Article  CAS  Google Scholar 

  • Moldoveanu SC (2009) Pyrolysis of organic molecules: applications to health and environmental issues. Elsevier, Berlin

    Google Scholar 

  • Monhol FAF, Martins MF (2014) Ignition by thermal radiation of polyethylene and human feces combustible wastes: time and temperature to ignition. Adv Mater Res Trans Tech Publ 911:373–377

    CAS  Google Scholar 

  • Neves D, Thunman H, Matos A, Tarelho L, Gómez-Barea A (2011) Characterization and prediction of biomass pyrolysis products. Progress Energy Combust Sci 37(5):611–630

    Article  CAS  Google Scholar 

  • Ren Q, Zhao C, Wu X, Liang C, Chen X, Shen J, Wang Z (2010) Catalytic effects of fe, al and si on the formation of no x precursors and hcl during straw pyrolysis. J Therm Anal Calorimetry 99(1):301–306

    Article  CAS  Google Scholar 

  • Roberts A (1971) The heat of reaction during the pyrolysis of wood. Combust Flame 17(1):79–86

    Article  CAS  Google Scholar 

  • Rose C, Parker A, Jefferson B, Cartmell E (2015) The characterization of feces and urine: a review of the literature to inform advanced treatment technology. Crit Rev Environ Sci Technol 45(17):1827–1879

    Article  CAS  PubMed Central  Google Scholar 

  • Sánchez-Monedero M, Sánchez-García M, Alburquerque J, Cayuela M (2019) Biochar reduces volatile organic compounds generated during chicken manure composting. Bioresourc Technol 288:121584

    Article  Google Scholar 

  • Senneca O, Chirone R, Salatino P (2002) A thermogravimetric study of nonfossil solid fuels. 2. Oxidative pyrolysis and char combustion. Energy Fuels 16(3):661–668

    Article  CAS  Google Scholar 

  • Senneca O, Chirone R, Salatino P, Nappi L (2007) Patterns and kinetics of pyrolysis of tobacco under inert and oxidative conditions. J Anal Appl Pyrolysis 79(1–2):227–233

    Article  CAS  Google Scholar 

  • Soares RB, Martins MF, Gonçalves RF (2020) Thermochemical conversion of wastewater microalgae: the effects of coagulants used in the harvest process. Algal Res 47:101864

    Article  Google Scholar 

  • Thomaz MC, Watanabe PH, Pascoal LA, Assis MM, Ruiz US, Amorim AB, Silva SZ, Almeida VV, Melo GM, Robles-Huaynate RA (2015) Inorganic and organic trace mineral supplementation in weanling pig diets. Anais Acad Brasil Ciências 87(2):1071–1081

    Article  CAS  Google Scholar 

  • Torero JL, Gerhard JI, Martins MF, Zanoni MAB, Rashwan TL, Brown JK (2020) Processes defining smouldering combustion: integrated review and synthesis. Progress Energy Combust Sci 81:100869

    Article  Google Scholar 

  • Vasiliou AK, Kim JH, Ormond TK, Piech KM, Urness KN, Scheer AM, Robichaud DJ, Mukarakate C, Nimlos MR, Daily JW et al (2013) Biomass pyrolysis: thermal decomposition mechanisms of furfural and benzaldehyde. J Chem Phys 139(10):104310

    Article  Google Scholar 

  • Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43(5–1):1126–1128

    Article  CAS  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788

    Article  CAS  Google Scholar 

  • Zhao S, Liu M, Zhao L, Lu J (2017) Effects of organic and inorganic metal salts on thermogravimetric pyrolysis of biomass components. Korean J Chem Eng 34(12):3077–3084

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcio Ferreira Martins.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittencourt, F.L.F., Martins, M.F. On the strong exothermicity of fecal matter pyrolysis under an inert atmosphere. Braz. J. Chem. Eng. 37, 661–666 (2020). https://doi.org/10.1007/s43153-020-00052-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-020-00052-8

Keywords

Navigation