Skip to main content

Advertisement

Log in

Contrary Roles of Wnt/β-Catenin Signaling in BMP9-Induced Osteogenic and Adipogenic Differentiation of 3T3-L1 Preadipocytes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Our previous study revealed that 3T3-L1 preadipocytes can differentiate to either osteoblasts or adipocytes in response to bone morphogenic protein 9 (BMP9). In the present study, we try to further investigate whether the Wnt/β-catenin signaling plays a crucial role in this process. It was found that BMP9 effectively activated the Wnt/β-catenin signaling, and induced the expression levels of certain canonical Wnt ligands and their receptors in preadipocytes. Exogenous expression of β-catenin, Wnt1, Wnt3a, and Wnt10b potentiated BMP9-induced alkaline phosphatase (ALP) activity, while β-catenin knockdown or Dickkopf 1 (Dkk1) diminished BMP9-induced ALP activity. Moreover, it was demonstrated that β-catenin overexpression promoted BMP9-induced mineralization, and increased the expression levels of late osteogenic markers osteopontin and osteocalcin. Furthermore, β-catenin inhibited BMP9-induced lipid accumulation and the adipogenic marker adipocyte fatty acid binding protein (aP2). The cell-implantation assay results identified that β-catenin not only augmented BMP9-induced ectopic bone formation, but also blocked adipogenesis in vivo. Mechanistically, it was found that β-catenin and BMP9 synergistically stimulated the osteogenic transcription factors runt-related transcription factor 2 (Runx2) and Osterix (OSX). However, BMP9-induced adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer-binding protein α (C/EBPα), were inhibited by β-catenin. Therefore, these findings suggested that the Wnt/β-catenin signaling, potentially via the modulation of osteogenic and adipogenic transcriptional factors, exerts an opposite effect on BMP9-induced osteogenic and adipogenic differentiation in preadipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Meunier, P., Aaron, J., Edouard, C., & Vignon, G. (1971). Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clinical Orthopaedics and Related Research, 80, 147–154. https://doi.org/10.1097/00003086-197110000-00021.

    Article  CAS  PubMed  Google Scholar 

  2. Verma, S., Rajaratnam, J. H., Denton, J., Hoyland, J. A., & Byers, R. J. (2002). Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. Journal of Clinical Pathology, 55, 693–698. https://doi.org/10.1136/jcp.55.9.693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Justesen, J., Stenderup, K., Ebbesen, E. N., Li, M., Steiniche, T., & Kassem, M. (2001). Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology, 2, 165–171. https://doi.org/10.1023/A:1011513223894.

    Article  CAS  PubMed  Google Scholar 

  4. Justesen, J., Stenderup, K., Eriksen, E. F., Kassem, M., Justesen, J., Stenderup, K., Eriksen, E. F., & Kassem, M. (2002). Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcified Tissue International, 71, 36–44. https://doi.org/10.1007/s00223-001-2059-x.

    Article  CAS  PubMed  Google Scholar 

  5. Gimble, J. M., Zvonic, S., Floyd, Z. E., Kassem, M., & Nuttall, M. E. (2006). Playing with bone and fat. Journal of Cellular Biochemistry, 98, 251. https://doi.org/10.1002/jcb.20777.

    Article  CAS  PubMed  Google Scholar 

  6. Park, S. R., Oreffo, R. O., & Triffitt, J. T. (1999). Interconversion potential of cloned human marrow adipocytes in vitro. Bone, 24, 549. https://doi.org/10.1016/s8756-3282(99)00084-8.

    Article  CAS  PubMed  Google Scholar 

  7. Justesen, J., Pedersen, S. B., Stenderup, K., & Kassem, M. (2004). Subcutaneous adipocytes can differentiate into bone-forming cells in vitro and in vivo. Tissue Engineering, 10, 381–391. https://doi.org/10.1089/107632704323061744.

    Article  CAS  PubMed  Google Scholar 

  8. Park, J. G., Lee, D. H., Moon, Y. S., & Kim, K. H. (2014). Reversine increases the plasticity of lineage-committed preadipocytes to osteogenesis by inhibiting adipogenesis through induction of TGF-β pathway in vitro. Biochemical & Biophysical Research Communications, 446, 30–36. https://doi.org/10.1016/j.bbrc.2014.02.036.

    Article  CAS  Google Scholar 

  9. Skillington, J., Choy, L., & Derynck, R. (2002). Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. Journal of Cell Biology, 159, 135–146. https://doi.org/10.1083/jcb.200204060.

    Article  CAS  PubMed  Google Scholar 

  10. MacDonald, B. T., Tamai, K., & Xi, H. (2009). Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental Cell, 17, 0–26. https://doi.org/10.1016/j.devcel.2009.06.016.

    Article  CAS  Google Scholar 

  11. Congdon, K. L., Voermans, C., Ferguson, E. C., Dimascio, L. N., & Reya, T. (2008). Activation of Wnt signaling in hematopoietic regeneration. Stem Cells, 26, 1202–1210. https://doi.org/10.1634/stemcells.2007-0768.

    Article  CAS  PubMed  Google Scholar 

  12. Zhan, T., Rindtorff, N., & Boutros, M. (2016). Wnt signaling in cancer. Oncogene, 36, 1461–1473. https://doi.org/10.1038/onc.2016.304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nd, G. D., & Karsenty, G. (2007). In vivo analysis of Wnt signaling in bone. Endocrinology, 148, 2630–2634. https://doi.org/10.1210/en.2006-1372.

    Article  CAS  Google Scholar 

  14. Cadigan, K. M., & Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes Development, 11, 3286–3305. https://doi.org/10.1101/gad.11.24.3286.

    Article  CAS  PubMed  Google Scholar 

  15. Karsenty, G., & Wagner, E. F. (2002). Reaching a genetic and molecular understanding of skeletal development. Developmental Cell, 2, 389–406. https://doi.org/10.1016/S1534-5807(02)00157-0.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, J. H., Liu, X., Wang, J., Chen, X., Zhang, H., Kim, S. H., Cui, J., Li, R., Zhang, W., & Kong, Y. (2013). Wnt signaling in bone formation and its therapeutic potential for bone diseases. Therapeutic Advances in Musculoskelet Disease, 5, 13–31. https://doi.org/10.1177/1759720X12466608.

    Article  CAS  Google Scholar 

  17. Liu, Y., Liu, Y. Y., Zhang, R. X., Wang, X., Huang, F., Yan, Z. J., Mao, N., Huang, J., Wang, Y. Z., Wang, Y., Chen, L., Yin, L. J., He, B. C., & Deng, Z. L. (2014). All-trans retinoic acid modulates bone morphogenic protein 9-induced osteogenesis and adipogenesis of preadipocytes through BMP/Smad and Wnt/β-catenin signaling pathways. International Journal of Biochemistry & Cell Biology, 47, 47–56. https://doi.org/10.1016/j.biocel.2013.11.018.

    Article  CAS  Google Scholar 

  18. Tang, N., Song, W. X., Luo, J., Luo, X., Jin, C., Sharff, K. A., Yang, B., He, B. C., Huang, J. Y., & Zhu, G. H. (2009). BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. Journal of Cellular & Molecular Medicine, 13, 2448–2464. https://doi.org/10.1111/j.1582-4934.2008.00569.x.

    Article  Google Scholar 

  19. Pi, C. J., Liang, K. L., Ke, Z. Y., Chen, F., Cheng, Y., Yin, L. J., Deng, Z. L., He, B. C., & Chen, L. (2016). Adenovirus-mediated expression of vascularendothelial growth factor-a potentiates bone morphogenetic protein 9-induced osteogenic differentiation and bone formation. Biological Chemistry, 397, 765–775. https://doi.org/10.1515/hsz-2015-0296.

    Article  CAS  PubMed  Google Scholar 

  20. Lin, L., Qiu, Q., Zhou, N., Dong, W., Shen, J., Jiang, W., Fang, J., Hao, J., & Hu, Z. (2016). Dickkopf-1 is involved in BMP9-induced osteoblast differentiation of C3H10T1/2 mesenchymal stem cells. BMB Reports, 49, 179–184. https://doi.org/10.5483/BMBRep.2016.49.3.206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen, Y., Whetstone, H. C., Youn, A., Nadesan, P., Chow, E. C., Lin, A. C., & Alman, B. A. (2007). Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. Journal of Biological Chemistry, 282, 526–533. https://doi.org/10.1074/jbc.m602700200.

    Article  CAS  PubMed  Google Scholar 

  22. Papathanasiou, I., Malizos, K. N., & Tsezou, A. (2012). Bone morphogenetic protein-2-induced Wnt/β-catenin signaling pathway activation through enhanced low-density-lipoprotein receptor-related protein 5 catabolic activity contributes to hypertrophy in osteoarthritic chondrocytes.Arthritis Research & Therapy, 14(2), 1–14. https://doi.org/10.1186/ar3805.

    Article  CAS  Google Scholar 

  23. Zhang, M., Yan, Y., Lim, Y. B., Tang, D., Xie, R., Chen, A., Tai, P., Harris, S. E., Xing, L., & Qin, Y. X. (2009). BMP-2 modulates β-catenin signaling through stimulation of Lrp5 expression and inhibition of β-TrCP expression in osteoblasts. Journal of Cellular Biochemistry, 108, 896–905. https://doi.org/10.1002/jcb.22319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, L., Yamasaki, K., Shirakata, Y., Dai, X., Tokumaru, S., Yahata, Y., Tohyama, M., Hanakawa, Y., Sayama, K., & Hashimoto, K. (2006). Bone morphogenetic protein-2 modulates Wnt and frizzled expression and enhances the canonical pathway of Wnt signaling in normal keratinocytes. Journal of Dermatological Science, 42, 111–119. https://doi.org/10.1016/j.jdermsci.2005.12.011.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, H. K. W., Oxendine, I., & Kamiya, N. (2013). High-concentration of BMP2 reduces cell proliferation and increases apoptosis via DKK1 and SOST in human primary periosteal cells. Bone, 54, 141–150. https://doi.org/10.1016/j.bone.2013.01.031.

    Article  CAS  PubMed  Google Scholar 

  26. Kamiya, N., Kobayashi, T., Mochida, Y., Yu, P. B., Yamauchi, M., Kronenberg, H. M., & Mishina, Y. (2010). Wnt inhibitors Dkk1 and Sost are downstream targets of BMP signaling through the type IA receptor (BMPRIA) in osteoblasts. Journal of Bone & Mineral Research, 25, 200–210. https://doi.org/10.1359/jbmr.090806.

    Article  CAS  Google Scholar 

  27. Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127, 469–480. https://doi.org/10.1016/j.cell.2006.10.018.

    Article  CAS  PubMed  Google Scholar 

  28. Zhu, J. H., Liao, Y. P., Li, F. S., Hu, Y., Li, Q., Ma, Y., Wang, H., Zhou, Y., He, B. C., & Su, Y. X. (2018). Wnt11 promotes BMP9-induced osteogenic differentiation through BMPs/Smads and p38 MAPK in mesenchymal stem cells. Journal of Cellular Biochemistry, 119, 9462–9473. https://doi.org/10.1002/jcb.27262.

    Article  CAS  PubMed  Google Scholar 

  29. Gong, Y., Slee, R. B., Fukai, N., Rawadi, G., Romanroman, S., Reginato, A. M., Wang, H., Cundy, T., Glorieux, F. H., & Lev, D. (2001). LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell, 107, 513–523. https://doi.org/10.1016/S0092-8674(01)00571-2.

    Article  CAS  PubMed  Google Scholar 

  30. Georges, R., Béatrice, V., Fred, D., Roland, B., & Sergio, R. R. (2010). BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. Journal of Bone & Mineral Research, 18, 1842–1853. https://doi.org/10.1359/jbmr.2003.18.10.1842.

    Article  Google Scholar 

  31. Zhang, H., Wang, J., Deng, F., Huang, E., Yan, Z., Wang, Z., Deng, Y., Zhang, Q., Zhang, Z., & Ye, J. (2015). Canonical Wnt signaling acts synergistically on BMP9-induced osteo/odontoblastic differentiation of stem cells of dental apical papilla (SCAPs). Biomaterials, 39, 145–154. https://doi.org/10.1016/j.biomaterials.2014.11.007.

    Article  CAS  PubMed  Google Scholar 

  32. Shen, J., James, A. W., Zhang, X., Shen, P., Zara, J. N., Asatrian, G., Chiang, M., Min, L., Khadarian, K., & Nguyen, A. (2016). Novel Wnt regulator NEL-Like molecule-1 antagonizes adipogenesis and augments osteogenesis induced by bone morphogenetic protein 2. American Journal of Pathology, 186, 419–434. https://doi.org/10.1016/j.ajpath.2015.10.011.

    Article  CAS  PubMed  Google Scholar 

  33. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 89, 747–754. https://doi.org/10.1016/s0092-8674(00)80257-3.

    Article  CAS  PubMed  Google Scholar 

  34. Tripti, G., Lengner, C. J., Hayk, H., Bhat, R. A., Bodine, P. V. N., Komm, B. S., Amjad, J., Wijnen, A. J. V., Stein, J. L., & Stein, G. S. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. Journal of Biological Chemistry, 280, 33132–33140. https://doi.org/10.1074/jbc.M500608200.

    Article  CAS  Google Scholar 

  35. Takahashi, T. (2011). Overexpression of Runx2 and MKP-1 stimulates transdifferentiation of 3T3-L1 preadipocytes into bone-forming osteoblasts in vitro. Calcified Tissue International, 88, 336–347. https://doi.org/10.1007/s00223-011-9461-9.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, Y., Li, X., Qian, S., Guo, L., Huang, H., He, Q., Liu, Y., Ma, C., & Tang, Q. Q. (2012). Down-regulation of Type I Runx2 mediated by dexamethasone is required for 3T3-L1 adipogenesis. Molecular Endocrinology, 26, 798–808.

    Article  Google Scholar 

  37. Enomoto, H., Furuichi, T. A., Yamana, K., Yoshida, C., Sumitani, S., Yamamoto, H., Enomoto-Iwamoto, M., Iwamoto, M., & Komori, T. (2004). Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. Journal of Cell Science, 117, 417 https://doi.org/10.1242/jcs.00866.

    Article  CAS  PubMed  Google Scholar 

  38. Gori, F., Thomas, T., Hicok, K. C., Spelsberg, T. C., & Riggs, B. L. (2010). Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. Journal of Bone & Mineral Research, 14, 1522–1535. https://doi.org/10.1359/jbmr.1999.14.9.1522.

    Article  Google Scholar 

  39. Kang, S., Bennett, C. N., Gerin, I., Rapp, L. A., & Macdougald, O. A. (2007). WNT signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing c/EBPα and PPARγ. Journal of Biological Chemistry, 282, 14515–14524. https://doi.org/10.1074/jbc.m700030200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. TC He (University of Chicago Medical Center, USA) for providing recombinant adenoviruses and pTOP-luc reporter plasmid. The present study was supported by Natural Science Foundation of China (grant no. 81601895).

Author information

Authors and Affiliations

Authors

Contributions

Y.L., K.L.L., and L.C. conceived and designed the study. K.L.L., R.D.L., Z.J.Y., and L.Y.W. performed the experiments. Y.L. and K.L.L. collected and analyzed the data. Y.L. wrote the manuscript.

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Conflict of Interest

All authors have no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Du, Y., Chen, L. et al. Contrary Roles of Wnt/β-Catenin Signaling in BMP9-Induced Osteogenic and Adipogenic Differentiation of 3T3-L1 Preadipocytes. Cell Biochem Biophys 78, 347–356 (2020). https://doi.org/10.1007/s12013-020-00935-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00935-0

Keywords

Navigation