Skip to main content
Log in

Synthesis and Characterization of Mixed–Metal Oxide Nanoparticles (CeNiO3, CeZrO4, CeCaO3) and Application in Adsorption and Catalytic Oxidation–Decomposition of Asphaltenes with Different Chemical Structures

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This study investigates the catalytic activity of mixed–metal oxide nanoparticles with different surface acidities on asphaltene adsorption followed by catalytic oxidation–decomposition. Three different types of mixed–metal oxide nanoparticles (CeNiO3, CeCaO3 and CeZrO4) were synthesized, and their size, structure, and acid properties were characterized by field–emission scanning electron microscopy (FE–SEM), energy-dispersive X-ray spectroscopy (EDX), the high–resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurement and ammonia temperature-programmed desorption (NH3–TPD). Asphaltenes were extracted from two different Iranian crude oil samples (Kuh-e-Mond with API = 12.8 and Bangestan with API = 23.8). For all the three mixed-metal oxide nanoparticles, the isotherm data fitted well to the Langmuir model for both asphaltene types. Results showed that the adsorption capacity and affinity of nanoparticles decreases in the order of CeNiO3 > CeCaO3 > CeZrO4 for both types. Asphaltenes adsorbed over nanoparticles were subjected to oxidation–decomposition in a thermogravimetric analyzer (TGA) to study the catalytic effect of nanoparticles. Results showed the oxidation−decomposition temperature of asphaltene decreased about 155–180°C for Kuh-e-Mond asphaltene and 95–150°C for Bangestan asphaltene in the presence of nanoparticles, showing their catalytic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. S. I. Andersen and J. G. Speight, J. Pet. Sci. Eng. 22, 53 (1999). https://doi.org/10.1016/S0920-4105(98)00057-6

  2. D. Borton, D. S. Pinkston, M. R. Hurt, et al., Energy Fuels 24, 5548 (2010). https://doi.org/10.1021/ef1007819

  3. C. A. Franco, N. N. Nassar, M. A. Ruiz, et al., Energy Fuels 27, 2899 (2013). https://doi.org/10.1021/ef4000825

  4. S. L. Kokal, S. G. Sayegh, in Proceedings of Middle East Oil Show, 11–14 March1995,Bahrain, p. 169.

  5. D. Eskin, O. Mohammadzadeh, K. Akbarzadeh, et al., Can. J. Chem. Eng. 94, 1202 (2016).

    Article  CAS  Google Scholar 

  6. C. Drummond and J. Israelachvili, J. Pet. Sci. Eng. 45, 61 (2004).

    CAS  Google Scholar 

  7. R. Z. Syunyaev, R. M. Balabin, I. S. Akhatov, and J. O. Safieva, Energy Fuels 23, 1230 (2009). https://doi.org/10.1021/ef8006068

  8. J. D. McLean and P. K. Kilpatrick, J. Colloid Interface Sci. 196, 23 (1997).

    Article  CAS  Google Scholar 

  9. K. Akbarzadeh, A. Hammami, A. Kharat, et al., Oilfield Rev. 19 (2), 22 (2007).

    CAS  Google Scholar 

  10. H. Alboudwarej, D. Pole, W. Y. Svrcek, and H. W. Yarranton, Ind. Eng. Chem. Res. 44, 5585 (2005). https://doi.org/10.1021/ie048948f

  11. J. J. Adams, Energy Fuels 28, 2831 (2014).

    Article  CAS  Google Scholar 

  12. N. N. Nassar, Energy Fuels 24, 4116 (2010). https://doi.org/10.1021/ef100458g

  13. W. A. Abdallah and S. D. Taylor, Nucl. Instrum. Methods Phys. Res., Sect. B 258, 213 (2007).

    CAS  Google Scholar 

  14. A. W. Marczewski and M. Szymula, Colloids Surf., A 208, 259 (2002).

    Article  CAS  Google Scholar 

  15. P. Ekholm, E. Blomberg, P. Claesson, et al., J. Colloid Interface Sci. 247, 342 (2002). https://doi.org/10.1006/jcis.2002.8122

  16. G. González and A. Middea, Colloids Surf. 52, 207 (1991).

    Article  Google Scholar 

  17. A. Cosultchi, E. Garciafigueroa, B. Mar, et al., Fuel 81, 413 (2002). https://doi.org/10.1016/S0016-2361(01)00187-9

  18. T. Pernyeszi and I. Dékány, Colloids Surf., A 194, 25 (2001).

    Article  CAS  Google Scholar 

  19. H. Gaboriau and A. Saada, Chemosphere 44, 1633 (2001). https://doi.org/10.1016/S0045-6535(00)00527-0

  20. Z. X. Tong, N. R. Morrow, and X. Xie, J. Pet. Sci. Eng. 39, 351 (2003).

    CAS  Google Scholar 

  21. S. F. Alkafeef, M. K. Algharaib, and A. F. Alajmi, J. Colloid Interface Sci. 298, 13 (2006). https://doi.org/10.1016/j.jcis.2005.12.038

  22. K. Sakanishi, I. Saito, I. Watanabe, and I. Mochida, Fuel 83, 1889 (2004).

    Article  CAS  Google Scholar 

  23. M. S. Akhlaq, P. Götze, D. Kessel, and W. Dornow, Colloids Surf., A 126, 25 (1997). https://doi.org/10.1016/S0927-7757(96)03947-7

  24. M. Castro, J. L. Mendoza de la Cruz, E. Buenrostro-Gonzalez, et al., Fluid Phase Equilib. 286, 113 (2009). https://doi.org/10.1016/j.fluid.2009.08.009

  25. N. N. Nassar, A. Hassan, and G. Vitale, Appl. Catal., A 484, 161 (2014).

  26. N. L. Ezeonyeka, A. Hemmati-Sarapardeh, and M. M. Husein, Energy Fuels 32, 2213 (2018).

    Article  CAS  Google Scholar 

  27. A. Eshraghian and M. M. Husein, Fuel 217, 409 (2018).

    Article  CAS  Google Scholar 

  28. M. Mohammadi, M. Akbari, Z. Fakhroueian, et al., Energy Fuels 25, 3150 (2011).

    Article  CAS  Google Scholar 

  29. M. Igder, N. Hosseinpour, A. A. Biyouki, and A. Bahramian, Energy Fuels 32, 6689 (2018).

    Article  CAS  Google Scholar 

  30. S. Betancur, J. C. Carmona, N. N. Nassar, et al., Ind. Eng. Chem. Res. 55, 6122 (2016).

    Article  CAS  Google Scholar 

  31. Y. Kazemzadeh, S. E. Eshraghi, K. Kazemi, et al., Ind. Eng. Chem. Res. 54, 233 (2015).

    Article  CAS  Google Scholar 

  32. F. Shojaati, M. Riazi, S. H. Mousavi, and Z. Derikvand, Colloids Surf., A 531, 99 (2017).

    Article  CAS  Google Scholar 

  33. J. Wang, J. S. Buckley, and J. L. Creek, J. Disper. Sci. Technol. 25, 287 (2004).

    CAS  Google Scholar 

  34. N. Setoodeh, P. Darvishi, and A. Lashanizadegan, J. Disper. Sci. Technol. 39, 452 (2018).

    CAS  Google Scholar 

  35. N. Setoodeh, P. Darvishi, and F. Esmaeilzadeh, J. Disper. Sci. Technol. 39, 578 (2018).

    CAS  Google Scholar 

  36. N. Setoodeh, P. Darvishi, and A. Lashanizadegan, J. Disper. Sci. Technol. 39, 711 (2018).

    CAS  Google Scholar 

  37. V. Vargas, J. Castillo, R. Ocampo-Torres, et al., Pet. Sci. Technol. 36, 618 (2018).

    Article  CAS  Google Scholar 

  38. N. N. Nassar, A. Hassan, G. Luna, and P. Pereira-Almao, Catal. Today 207, 127 (2013). https://doi.org/10.1016/j.cattod.2012.04.054

  39. N. N. Nassar, A. Hassan, L. Carbognani, et al., Fuel 95, 257 (2012). https://doi.org/10.1016/j.fuel.2011.09.022

  40. N. N. Nassar, A. Hassan, and P. Pereira-Almao, J. Therm. Anal. Calorim. 110, 1327 (2012). https://doi.org/10.1007/s10973-011-2045-0

  41. N. N. Nassar, A. Hassan, and P. Pereira-Almao, Colloids Surf., A 384, 145 (2011).

    Article  CAS  Google Scholar 

  42. M. M. Lozano, C. A. Franco, S. A. Acevedo, et al., RSC Adv. 6, 74 630 (2016). https://doi.org/10.1039/c6ra17554f

  43. S. I. Hashemi, B. Fazelabdolabadi, S. Moradi, et al., Appl. Nanoscie. 6, 71 (2016).

    Article  CAS  Google Scholar 

  44. N. N. Nassar, A. Hassan, and P. Pereira-Almao, J. Colloid Interface Sci. 360, 233 (2011).

    Article  CAS  Google Scholar 

  45. N. Hosseinpour, A. A. Khodadadi, A. Bahramian, et al., Langmuir 29, 14 135 (2013). https://doi.org/10.1021/la402979h

  46. A. Trovarelli, Catal. Rev. 38, 439 (1996).

    Article  CAS  Google Scholar 

  47. M. Dejhosseini, T. Aida, M. Watanabe, et al., Energy Fuels 27, 4624 (2013). https://doi.org/10.1021/ef400855k

  48. H. Chang, M. T. Jong, C. Wang, et al., Environ. Sci. Technol. 47, 11 692 (2013).

    Article  Google Scholar 

  49. S. Samantaray, D. K. Pradhan, G. Hota, and B. G. Mishra, Chem. Eng. J. 193–194, 1 (2012). https://doi.org/10.1016/j.cej.2012.04.011

  50. M. Daturi, E. Finocchio, C. Binet, et al., J. Phys. Chem. B 104, 9186 (2000). https://doi.org/10.1021/jp000670r

  51. M. Sanchez-Dominguez, L. F. Liotta, G. Di Carlo, et al., Catal. Today 158, 35 (2010). https://doi.org/10.1016/j.cattod.2010.05.026

  52. G. Jacobs, E. Chenu, P. M. Patterson, et al., Appl. Catal., A 258, 203 (2004).

  53. W. Shan, M. Luo, P. Ying, et al., Appl. Catal., A 246, 1 (2003).

  54. C. Tang, B. Sun, J. Sun, et al., Catal. Today 281, 575 (2017).

    Article  CAS  Google Scholar 

  55. A.-G. Boudjahem, S. Monteverdi, M. Mercy, and M. M. Bettahar, Langmuir 20, 208 (2004). https://doi.org/10.1021/la035120

  56. A. G., Boudjahem, S. Monteverdi, M. Mercy, et al., Catal. Lett. 97, 177 (2004). https://doi.org/10.1023/B:CATL.0000038581.80872.7b

  57. H. R. Radfarnia and M. C. Iliuta, Ind. Eng. Chem. Res. 51, 10 390 (2012).

    Article  Google Scholar 

  58. X. Zhang, Q. Wang, J. Zhang, et al., RSC Adv. 5, 89 976 (2015).

    Article  Google Scholar 

  59. J.-L. Cao, Y. Wang, T.-Y. Zhang, et al., Appl. Catal., B 78, 120 (2008).

    Article  CAS  Google Scholar 

  60. IP Standards for Petroleum and Its Products: Methods for Analysis and Testing (Institute of Petroleum, London, 1985), Vol. 1, p. 126.

  61. J. S. Amin, E. Nikooee, M. H. Ghatee, et al., Appl. Surf. Sci. 257, 8341 (2011). https://doi.org/10.1016/j.apsusc.2011.03.123

  62. V. Calemma, P. Iwanski, M. Nali, et al., Energy Fuels 9, 225 (1995).

    Article  CAS  Google Scholar 

  63. E. Modrogan, M. H. Valkenberg, and W. F. Hoelderich, J. Catal. 261, 177 (2009). https://doi.org/10.1016/j.jcat.2008.11.019

  64. T. S. Glazneva, N. S. Kotsarenko, and E. A. Paukshtis, Kinet. Catal. 49, 859 (2008). https://doi.org/10.1134/S0023158408060104

  65. I. K. Yudin, G. L. Nikolaenko, E. E. Gorodetskii, et al., J. Pet. Sci. Eng. 20, 297 (1998). https://doi.org/10.1016/S0920-4105(98)00033-3

  66. D. Dudášová, S. Simon, P. V. Hemmingsen, and J. Sjöblom, Colloids Surf., A 317, 1 (2008). https://doi.org/10.1016/j.colsurfa.2007.09.023

Download references

Funding

This work was supported by the Iran National Science Foundation (INSF) [grant number no. 94013509]. The authors acknowledge the Iran National Science Foundation, for the support provided.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Dehghani or S. Bahadorikhalili.

Ethics declarations

CONFLICT OF INTEREST

All the authors declare that they have no conflict of interest.

THE AUTHORS ORCID ID

Farzaneh Dehghani, ORCID: https://orcid.org/0000-0002-3801-4569.

Saeed Bahadorikhalili, ORCID: https://orcid.org/0000-0001-8047-342X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehghani, F., Ayatollahi, S., Bahadorikhalili, S. et al. Synthesis and Characterization of Mixed–Metal Oxide Nanoparticles (CeNiO3, CeZrO4, CeCaO3) and Application in Adsorption and Catalytic Oxidation–Decomposition of Asphaltenes with Different Chemical Structures. Pet. Chem. 60, 731–743 (2020). https://doi.org/10.1134/S0965544120070038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120070038

Keywords:

Navigation