Skip to main content
Log in

Influence of Interfacial Stress on Microstructural Evolution in NiAl Alloys

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A phase-field model for the phase transition between austenite and martensite and twinning between two martensitic variants is presented from our previous theory [1] with the main focus on the influence of interfacial stress that is consistent with the sharp interface limit. Each variant-variant transformation can be represented by only one order parameter. Thus, it allows us to get the analytical solution of interface energy and width. Coupled phase-field and elasticity equations are solved for cubic-to-tetragonal phase transformation in NiAl shape memory alloy. The effects of interfacial stress are studied for martensite-martensite interfaces in detail, which was absent in [1]. Additionally, stress and temperature-induced growth of the martensitic phase inside austenite and twining are simulated. Some of the nontrivial experimentally observed microstructures reproduced in the simulations [1] are analyzed in detail. It includes tip splitting and bending, and twins crossing. This theory can be extended for electric, reconstructive, and magnetic phase transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. I. Levitas, A. M. Roy, and D. L. Preston, Phys. Rev. B 88, 054113 (2013).

    ADS  Google Scholar 

  2. E. K. Salje, Phase Transitions in Ferroelastic and Co-Elastic Crystals: An Introduction for Mineralogists (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  3. R. Ahluwalia, T. Lookman, A. Saxena, and A. R. Bishop, Phys. Rev. Lett. 91, 055501 (2003).

    ADS  Google Scholar 

  4. A. Artemev, Y. Jin, and A. G. Khachaturyan, Acta Mater. 49, 1165 (2001).

    Google Scholar 

  5. S. H. Curnoe and A. E. Jacobs, Phys. Rev. B 64, 064101 (2001).

    ADS  Google Scholar 

  6. V. I. Levitas and D. L. Preston, Phys. Rev. B 66, 134206 (2002).

    ADS  Google Scholar 

  7. V. I. Levitas and D. L. Preston, Phys. Rev. B 66, 134207 (2002).

    ADS  Google Scholar 

  8. V. I. Levitas, D. L. Preston, and D. W. Lee, Phys. Rev. B 68, 134201 (2003).

    ADS  Google Scholar 

  9. Y. U. Wang, Y. M. Jin, A. M. Cuitino, and A. G. Khachaturyan, Acta Mater. 49, 1847 (2001).

    Google Scholar 

  10. A. M. Roy, Appl. Phys. A 126, 576 (2020).

    ADS  Google Scholar 

  11. A. M. Roy, Mat. Sci. Res. India, Special Issue (2020). https://doi.org/10.13005/msri.17.special-issue1.02

  12. V. I. Levitas and D.-W. Lee, Phys. Rev. Lett. 99, 245701 (2007).

    ADS  Google Scholar 

  13. T. Lookman, A. Saxena, and R. C. Albers, Phys. Rev. Lett. 100, 145504 (2008).

    ADS  Google Scholar 

  14. D. A. Porter, K. E. Easterling, and M. Sherif, Phase Transformations in Metals and Alloys (CRC, Boca Raton, 2009).

    Google Scholar 

  15. V. I. Levitas, Phys. Rev. B 87, 054112 (2013).

    ADS  Google Scholar 

  16. V. I. Levitas, Acta Mater. 61, 4305 (2013).

    Google Scholar 

  17. V. I. Levitas, Int. J. Plast. 49, 85 (2013).

    Google Scholar 

  18. V. I. Levitas, J. Mech. Phys. Solids 70, 154 (2014).

    MathSciNet  ADS  Google Scholar 

  19. V. I. Levitas and A. M. Roy, Phys. Rev. B 91, 174109 (2015).

    ADS  Google Scholar 

  20. V. I. Levitas and A. M. Roy, Acta Mater. 105, 244 (2016).

    Google Scholar 

  21. A. M. Roy, Graduate Thesis and Dissertations, No. 14635 (Iowa State Univ., Ames, 2015).

    Google Scholar 

  22. G. I. Toth, T. Pusztai, and L. Granasy, Phys. Rev. B 92, 184105 (2015).

    ADS  Google Scholar 

  23. F. D. Fischer, T. Waitz, D. Vollath, and N. K. Simha, Prog. Mater. Sci. 53, 481 (2008).

    Google Scholar 

  24. H. Duan, E. Xie, L. Han, and Z. Xu, Adv. Mater. 20, 3284 (2008).

    Google Scholar 

  25. COMSOL, Inc. http://www.comsol.com.

  26. Ph. Boullay, D. Schryvers, and R. V. Kohn, Phys. Rev. B 64, 144105 (2001).

    ADS  Google Scholar 

  27. Ph. Boullay, D. Schryvers, and J. M. Ball, Acta. Mater. 51, 1421 (2003).

    Google Scholar 

Download references

Acknowledgments

I am grateful to Dr. V.I. Levitas from Iowa State University for his kind guidance and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Roy.

Additional information

Funding

This work was supported by the Los Alamos National Laboratory (contract no. 104321) and the U.S. National Science Foundation (grant no. CMMI-0969143).

Supplementary Materials to the article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A.M. Influence of Interfacial Stress on Microstructural Evolution in NiAl Alloys. Jetp Lett. 112, 173–179 (2020). https://doi.org/10.1134/S0021364020150023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020150023

Navigation