Skip to main content
Log in

Magnetic Data Profiles Interpretation for Mineralized Buried Structures Identification Applying the Variance Analysis Method

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We have developed a new method for the interpretation of a magnetic anomaly profile by idealized-geometrical bodies using the variance analysis. This method is based on estimating the fourth horizontal derivative of the magnetic data profile. The advantage behind the use of the fourth horizontal derivative method is to reduce the regional background effect. The model parameters estimated are the depth and shape of the buried body using all available window lengths (s-value). Then, the variance value for the calculated depth at each shape value is estimated using all available s-values. The minimum variance is considered as the best criterion for determining the best-inverted parameters (depth and shape). The developed method has been verified on some noise free examples. Following that, the accuracy of the method was assessed by studying the impact of synthetic data with 5%, 10%, and 15% random noise, the effect of the regional background, the influence of interfering structures, and the selection for the wrong origin of the body. The presented method has been successfully applied to three real case studies from Brazil and India from mineral exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

modified from Bizzi et al. 2003; Daly et al. 2014). b The observed magnetic anomalous profile for the Parnaiba basin, Brazil. c The fourth horizontal derivative anomalies of the magnetic anomaly in b

Fig. 10
Fig. 11

Similar content being viewed by others

Code availability

The code will be available upon request.

References

  • Abdel Zaher, M., Saibi, H., Mansour, K., Khalil, A., & Soliman, M. (2018). Geothermal exploration using airborne gravity and magnetic data at Siwa Oasis, Western Desert, Egypt. Renewable and Sustainable Energy Reviews, 82, 3824–3832.

    Google Scholar 

  • Abdelrahman, E. M., & Essa, K. S. (2005). Magnetic interpretation using a least-squares, depth-shape curves method. Geophysics, 70, L23–L30.

    Google Scholar 

  • Abdelrahman, E. M., & Essa, K. S. (2015). A new method for depth and shape determinations from magnetic data. Pure and Applied Geophysics, 172, 439–460.

    Google Scholar 

  • Abdelrahman, E. M., EL-Araby, T. M., & Essa, K. S. (2003a). A least-squares minimisation approach to depth, index parameter, and amplitude coefficient determination from magnetic anomalies due to thin dykes. Exploration Geophysics, 34, 241–248.

    Google Scholar 

  • Abdelrahman, E. M., EL-Araby, H. M., EL-Araby, T. M., & Essa, K. S. (2003b). A least-squares minimization approach to depth determination from magnetic data. Pure and Applied Geophysics, 160, 1259–1271.

    Google Scholar 

  • Abdelrahman, E. M., Abo-Ezz, E. R., Essa, K. S., El-Araby, T. M., & Soliman, K. S. (2007). A new least-squares minimization approach to depth and shape determination from magnetic data. Geophysical Prospecting, 55, 433–446.

    Google Scholar 

  • Abdelrahman, E. M., El-Araby, T. M., Abo-Ezz, E. R., Soliman, K. S., & Essa, K. S. (2008). A new algorithm for depth determination from total magnetic anomalies due to spheres. Pure and Applied Geophysics, 165, 967–979.

    Google Scholar 

  • Abedi, M. (2018). An integrated approach to evaluate the Aji-Chai potash resources in Iran using potential field data. Journal of African Earth Sciences, 139, 379–391.

    Google Scholar 

  • Abedi, M., Gholami, A., & Norouzi, G. H. (2013). A stable downward continuation of airborne magnetic data: A case study for mineral prospectivity mapping in Central Iran. Computers and Geosciences, 52, 269–280.

    Google Scholar 

  • Abedi, M., Gholami, A., & Norouzi, G. H. (2014). 3D inversion of magnetic data seeking sharp boundaries: a case study for a porphyry copper deposit from Now Chun in central Iran. Near Surface Geophysics, 12, 657–666.

    Google Scholar 

  • Abo-Ezz, E. R., & Essa, K. S. (2016). A least-squares minimization approach for model parameters estimate by using a new magnetic anomaly formula. Pure and Applied Geophysics, 173, 1265–1278.

    Google Scholar 

  • Aboud, E., Salem, A., & Mekkawi, M. (2011). Curie depth map for Sinai Peninsula, Egypt deduced from the analysis of magnetic data. Tectonophysics, 506, 46–54.

    Google Scholar 

  • Abubakar, R., Muxworthy, A. R., Sephton, M. A., Southern, P., Watson, J. S., & Fraser, A. J. (2015). Formation of magnetic minerals at hydrocarbon-generation conditions. Marine and Petroleum Geology, 68, 509–519.

    Google Scholar 

  • Al-Farhan, M., Oskooi, B., Ardestani, V. E., Abedi, M., & Al-Khalidy, A. (2019). Magnetic and gravity signatures of the Kifl oil field in Iraq. Journal of Petroleum Science and Engineering, 183, 106397.

    Google Scholar 

  • Al-Garni, M. A. (2010). Interpretation of spontaneous potential anomalies from some simple geometrically shaped bodies using neural network inversion. Acta Geophysica, 58, 143–162.

    Google Scholar 

  • Al-Garni, M. A. (2011). Magnetic and DC resistivity investigation for groundwater in a complex subsurface terrain. Arabian Journal of Geosciences, 4, 385–400.

    Google Scholar 

  • Amoah, B. K., Dadzie, I., & Takyi-Kyeremeh, K. (2018). Integrating gravity and magnetic field data to delineate structurally controlled gold mineralization in the Sefwi Belt of Ghana. Journal of Geophysics and Engineering, 15, 1197–1203.

    Google Scholar 

  • Araffa, S. A. S., Helaly, A. S., Khozium, A., Lala, A. M. S., Soliman, S. A., & Hassan, N. M. (2015). Delineating groundwater and subsurface structures by using 2D resistivity, gravity and 3D magnetic data interpretation around Cairo-Belbies Desert road, Egypt. NRIAG Journal of Astronomy and Geophysics, 4, 134–146.

    Google Scholar 

  • Bhimasankaram, V. L. S., Mohan, N. I., & Seshagiri Rao, S. V. (1978). Interpretation of magnetic anomalies of dikes using Fourier transforms. Geophysical Exploration, 16, 259–266.

    Google Scholar 

  • Bin, S., Ping, D., Chong, W., Xiaoxuan, P., & Yongjing, W. (2009). Quantitative analysis of magnetic anomaly of reinforcements in bored in-situ concrete piles. Applied Geophysics, 6(3), 275–286.

    Google Scholar 

  • Biswas, A. (2015). Interpretation of residual gravity anomaly caused by a simple shaped body using very fast simulated annealing global optimization. Geoscience Frontiers, 6, 875–893.

    Google Scholar 

  • Biswas, A. (2016). Interpretation of gravity and magnetic anomaly over thin sheet-type structure using very fast simulated annealing global optimization technique. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-016-0082-1.

    Article  Google Scholar 

  • Biswas, A. (2017). Inversion of source parameters from magnetic anomalies for mineral/ore deposits exploration using global optimization technique and analysis of uncertainty. Natural Resources Research, 27(1), 77–107.

    Google Scholar 

  • Bizzi, L. A., Schobbenhaus, C., Vidotti, R. M., & Gonçalves, J. H. (2003). Geologia, Tectônica e Recursos Minerais do Brasil. CPRM, Ed., UnB, Brasília, p. 692.

  • Cordani, U. G., Pimentel, M. M., Araujo, C. E. G., & Fuck, R. A. (2013). The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology, 43, 583–597.

    Google Scholar 

  • Daly, M. C., Andrade, V., Barousse, C. A., Costa, R., McDowell, K., Piggott, N., et al. (2014). Brasiliano crustal structure and the tectonic setting of the Parnaíba basin of NE Brazil: Results of a deep seismic reflection profile. Tectonics, 33, 2102–2120.

    Google Scholar 

  • De Castro, D. L., Fuck, R. A., Phillips, J. D., Vidotti, R. M., Bezerra, F. H. R., & Dantas, E. L. (2014). Crustal structure beneath the Paleozoic Parnaiba Basin revealed by airborne gravity and magnetic data, Brazil. Tectonophysics, 614, 128–145.

    Google Scholar 

  • Di Maio, R., La Manna, M., Piegari, E., Zara, A., & Bonetto, J. (2018). Reconstruction of a Mediterranean coast archaeological site by integration of geophysical and archaeological data: The eastern district of the ancient city of Nora (Sardinia, Italy). Journal of Archaeological Science: Reports, 20, 230–238.

    Google Scholar 

  • Dondurur, D., & Pamukçu, O. A. (2003). Interpretation of magnetic anomalies due to dykes. Geophysical Prospecting, 11, 509–522.

    Google Scholar 

  • Dong, P., Fan, J. L., Liu, C. H., Chen, G. W., Wang, L. S., & Sun, B. (2007). Magnetic anomaly characteristics out of reinforcement cage in cast-in situ pile. Progress in Geophysics, 22(5), 1660–1665. (in Chinese).

    Google Scholar 

  • Dunstan, S., Rosenbaum, G., & Babaahmadi, A. (2016). Structure and kinematics of the Louth-Eumarra Shear Zone (north-central New South Wales, Australia) and implications for the Paleozoic plate tectonic evolution of eastern Australia. Australian Journal of Earth Sciences, 63(1), 63–80.

    Google Scholar 

  • Elhussein, M., & Shokry, M. (2020). Use of the airborne magnetic data for edge basalt detection in Qaret Had El Bahr area, Northeastern Bahariya Oasis, Egypt. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-020-01831-w.

    Article  Google Scholar 

  • Essa, K. S., & Elhussein, M. (2017). A new approach for the interpretation of magnetic data by a 2-D dipping dike. Journal of Applied Geophysics, 136, 431–443.

    Google Scholar 

  • Essa, K. S., & Elhussein, M. (2018). PSO (Particle Swarm Optimization) for interpretation of magnetic anomalies caused by simple geometrical structures. Pure and Applied Geophysics, 175, 3539–3553.

    Google Scholar 

  • Essa, K. S., & Elhussein, M. (2019). Magnetic interpretation utilizing a new inverse algorithm for assessing the parameters of buried inclined dike-like geologic structure. Acta Geophysica, 67, 533–544.

    Google Scholar 

  • Essa, K. S., & Elhussein, M. (2020). Interpretation of magnetic data through particle swarm optimization: Mineral exploration cases studies. Natural Resources Research, 29, 521–537.

    Google Scholar 

  • Essa, K. S., & Géraud, Y. (2020). Parameters estimation from the gravity anomaly caused by the two-dimensional horizontal thin sheet applying the global particle swarm algorithm. Journal of Petroleum Science and Engineering, 193, 107421.

    Google Scholar 

  • Essa, K. S., Sharafeldin, S. M., & Hesham, A. (2017). Magnetic, seismic and petrophysical studies for delineating the prospects at Ras Fanar, Gulf of Suez Egypt. Transylvanian Review, 25, 5859–5873.

    Google Scholar 

  • Essa, K. S., Nady, A. G., Mostafa, M. S., & Elhussein, M. (2018). Implementation of potential field data to depict the structural lineaments of the Sinai Peninsula, Egypt. Journal of African Earth Sciences, 147, 43–53.

    Google Scholar 

  • Gay, P. (1963). Standard curves for interpretation of magnetic anomalies over long tabular bodies. Geophysics, 28, 161–200.

    Google Scholar 

  • Gay, P. (1965). Standard curves for magnetic anomalies over long horizontal cylinders. Geophysics, 30, 818–828.

    Google Scholar 

  • Ghose, N. C., & Mukherjee, D. (2000). Chhotanagpur gneissgranulite complex, Eastern India–A kaleidoscope of global events. In: Trivedi, A.N., Sarkar, B.C., Ghose, N.C., Dhar, Y.R. (Eds.), Geology and mineral resources of Bihar and Jharkhand, Platinum Jubilee Commemoration volume, Indian School of Mines, Dhanbad, Institute of Geoexploration and Environment (pp. 33–58). Monograph no. 2.

  • Grant, F. S., & West, G. F. (1965). Interpretation Theory in Applied Geophysics. New York: McGraw-Hill Co.

    Google Scholar 

  • Gündoĝdu, N. Y., Candansayar, M. E., & Genç, E. (2017). Rescue archaeology application: Investigation of Kuriki mound archaeological area (Batman, SE Turkey) by using direct current resistivity and magnetic methods. Journal of Environmental and Engineering Geophysics, 22(2), 177–189.

    Google Scholar 

  • Kaftan, I. (2017). Interpretation of magnetic anomalies using a genetic algorithm. Acta Geophysica, 65, 627–634.

    Google Scholar 

  • Ku, C. C., & Sharp, J. A. (1983). Werner deconvolution for automated magnetic interpretation and its refinement using Marquardt’s inverse modeling. Geophysics, 48, 754–774.

    Google Scholar 

  • Mamidala, B. D., & Narasimman, S. (2019). Inversion of magnetic anomalies due to 2-D cylindrical structures—by an artificial neural network. International Journal on Soft Computing, 10, 1–18. https://doi.org/10.5121/ijsc.2019.10101.

    Article  Google Scholar 

  • Maus, S., Sengpiel, K. P., Röttger, B., Siemon, B., & Tordiffe, E. A. W. (1999). Variogram analysis of helicopter magnetic data to identify paleochannels of the Omaruru River, Namibia. Geophysics, 64(3), 785–794.

    Google Scholar 

  • Mehanee, S. (2014). Accurate and efficient regularized inversion approach for the interpretation of isolated gravity anomalies. Pure and Applied Geophysics, 171, 1897–1937.

    Google Scholar 

  • Mehanee, S., & Essa, K. S. (2015). 2.5D regularized inversion for the interpretation of residual gravity data by a dipping thin sheet: numerical examples and case studies with an insight on sensitivity and non-uniqueness. Earth, Planets and Space, 67, 130.

    Google Scholar 

  • Mehanee, S., Essa, K. S., & Smith, P. D. (2011). A rapid technique for estimating the depth and width of a two-dimensional plate from self-potential data. Journal of Geophysics and Engineering, 8, 447–456.

    Google Scholar 

  • Mehanee, S., Essa, K. S., & Diab, Z. E. (2020). Magnetic data interpretation using a new R-parameter imaging method with application to mineral exploration. Natural Resources Research. https://doi.org/10.1007/s11053-020-09690-8.

    Article  Google Scholar 

  • Middleton, M., Schnur, T., Sorjonen-Ward, P., & Hyvönen, E. (2015). Geological lineament interpretation using the object-based image analysis approach: Results of semi-automated analyses versus visual interpretation. Geological Survey of Finland, Special Paper, 57, 135–154.

    Google Scholar 

  • Prakasa Rao, T. K. S., & Subrahmanyam, M. (1988). Characteristic curves for the inversion of magnetic anomalies of spherical ore bodies. Pure and Applied Geophysics, 126, 69–83.

    Google Scholar 

  • Radhakrishna Murthy, I. V., Visveswara Rao, C., & Gopala Krishna, C. (1980). A gradient method for interpreting magnetic anomalies due to horizontal circular cylinders, infinite dikes and vertical steps. Proceedings of the Indian Academy of Science (Earth and Planet Science), 89, 31–42.

    Google Scholar 

  • Rao, B. S. R., Radhakrishna Murthy, I. V., & Visweswara Rao, C. (1973). A computer program for interpreting vertical magnetic anomalies of spheres and horizontal cylinders. Pure and Applied Geophysics, 110, 2056–2065.

    Google Scholar 

  • Rao, B. S. R., Prakasa Rao, T. K. S., & Murthy, A. S. K. (1977). A note on magnetized spheres. Geophysical Prospecting, 25, 746–757.

    Google Scholar 

  • Sharma, P. V. (1987). Magnetic method applied to mineral exploration. Ore Geology Reviews, 2, 323–357.

    Google Scholar 

  • Silva, J. B. C. (1989). Transformation of nonlinear problems into linear ones applied to the magnetic field of a two-dimensional prism. Geophysics, 54, 114–121.

    Google Scholar 

  • Srinivas, Y. (1998). Modified Hilbert transform—A tool to the interpretation of geopotential field anomalies, Thesis. Hyderabad, India: Osmania University.

    Google Scholar 

  • Srivastava, S., & Agarwal, B. N. P. (2010). Inversion of the amplitude of the two-dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique. Geophysical Journal International, 182, 652–662.

    Google Scholar 

  • Srivastava, S., Datta, D., Agarwal, B. N. P., & Mehta, S. (2014). Applications of ant colony optimization in determination of source parameters from total gradient of potential fields. Near Surface Geophysics, 12, 373–389.

    Google Scholar 

  • Subba Rao, Y. V., & Radhakrishna Murthy, I. V. (1985). Palaeomagnetism and ages of dolerite dykes in Karimnagar District, Andhra Pradesh, India. Geophysical Journal of the Royal Astronomical Society, 82, 331–337.

    Google Scholar 

  • Subrahmanyam, M., & Prakasa Rao, T. K. S. (2009). Interpretation of magnetic anomalies using some simple characteristic positions over tabular bodies. Exploration Geophysics, 40, 265–276.

    Google Scholar 

  • Sudhakar, K. S., Rama Rao, P., & Radhakrishna Murthy, I. V. (2004). Modified Werner deconvolution technique for inversion of magnetic anomalies of horizontal circular cylinders. Journal of Indian Geophysical Union, 8(3), 179–183.

    Google Scholar 

  • Sultan, S. A., Mekhemer, H. M., Santos, F. A. M., & Abd Alla, M. (2009). Geophysical measurements for subsurface mapping and groundwater exploration at the central part of the Sinai Peninsula, Egypt. Arabian Journal for Science and Engineering, 34, 103–119.

    Google Scholar 

  • Tarantola, A. (2005). Inverse problem theory and methods for model parameter estimation. Philadelphia: Society for Industrial and Applied Mathematics (SIAM).

  • Thompson, D. T. (1982). EULDPH—A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47, 31–37.

    Google Scholar 

  • Tlas, M., & Asfahani, J. (2011). Fair function minimization for interpretation of magnetic anomalies due to thin dikes, spheres and faults. Journal of Applied Geophysics, 75, 237–243.

    Google Scholar 

  • Tlas, M., & Asfahani, J. (2015). The simplex algorithm for best estimate of magnetic parameters related to simple geometric shaped structures. Mathematical Geosciences, 47, 301–316.

    Google Scholar 

  • Verma, R. K., & Bandopadhyay, R. R. (1975). A magnetic survey over Bankura Anorthosite complex and surrounding areas. Indian Journal of Earth Sciences, 2, 117–124.

    Google Scholar 

  • Verma, R. K., Ghose, D., Roy, S. K., & Ghose, A. (1975). Gravity survey of Bankura anorthosite complex, West Bengal. Journal of Geological Society of India, 16, 361–369.

    Google Scholar 

  • Wu, G., Zhang, C., & Yuan, Y. (2015). Interpretation of magnetic UXO data using a combined analytic signal and Euler method. The Society of Exploration Geophysicists and the Chinese Geophysical Society, 240–243.

  • Zhdanov, M. S. (2002). Geophysical inversion theory and regularization problems (p. 633). Amsterdam: Elsevier.

    Google Scholar 

Download references

Acknowledgments

The authors thank would like to thank Prof. Dr. Carla F. Braitenberg, Editor-in-Chief, Prof. Dr. Rezene Mahatsente, Editor, and two reviewers for their careful review, which guided and improved our paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Khalid S. Essa and Mahmoud Elhussein wrote the original text, Khalid S. Essa and Mahmoud Elhussein interpreted synthetic examples, Khalid S. Essa and Mahmoud Elhussein interpreted field examples, Khalid S. Essa and Mahmoud Elhussein produced Figures and Tables. Salah Mehanee wrote the revised manuscript and addressed the comments and concerns of the reviewers with Khalid S. Essa and Mahmoud Elhussein.

Corresponding author

Correspondence to Mahmoud Elhussein.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Availability of data and material

The data will be available upon request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essa, K.S., Mehanee, S. & Elhussein, M. Magnetic Data Profiles Interpretation for Mineralized Buried Structures Identification Applying the Variance Analysis Method. Pure Appl. Geophys. 178, 973–993 (2021). https://doi.org/10.1007/s00024-020-02553-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-020-02553-6

Keywords

Navigation