Skip to main content
Log in

Investigation of experimental results and D-optimal design of hafnium ion extraction from aqueous system using emulsion liquid membrane technique

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

Hafnium metal is used in a wide range of industries such as microprocessor manufacturing, nuclear reactors and special alloys due to its physical, chemical and radiation properties. Emulsion liquid membrane (ELM) is an effective and efficient alternative for heavy metal separation compared to conventional methods due to high selectivity, energy-saving, high mass transfer and low operating capital. In this study, Cyanex 572 as a carrier, Span 85 as a surfactant, hydrochloric acid as an internal phase and kerosene as a diluent were used. In the first part of the study, the stability of the emulsions was investigated. The most stable emulsions were obtained by adding PIB polymer (3% w/v), Span 85 surfactant (3% w/v) and stirring for 15 min. In the second part, the separation of hafnium metal ions from aqueous solutions was investigated using ELM technique. The highest separation was obtained at 4% (v/v) as carrier concentration, 4% (w/v) as surfactant concentration, the membrane-to-feed volume ratio of 20/100 and W/O/W emulsion stirring rate and time equal to 400 rpm and 5 min, respectively. Moreover, to optimize the factors influencing the tests, the design of experiment (DOE) was performed using D-optimal method via Design Expert 10 software. Based on DOE results, the maximum extraction (> 99%) was achieved when the carrier concentration, the surfactant concentration, W/O/W emulsion stirring time, W/O/W emulsion stirring rate and emulsion volume/feed phase ratio were 4.49% v/v, 3.90% w/v, 11.49 min, 310.54 rpm and 2:1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Fonseca Couto, L.C. Lange, M.C. Santos Amaral, A critical review on membrane separation processes applied to remove pharmaceutically active compounds from water and wastewater. J. Water Process Eng. 26, 156–175 (2018). https://doi.org/10.1016/j.jwpe.2018.10.010

    Article  Google Scholar 

  2. T.C. Zhang, R.Y. Surampalli, S. Vigneswaran, R. Tyagi, S. Leong Ong, C. Kao, Membrane Technology and Environmental Applications (American Society of Civil Engineers, New York, 2012)

    Book  Google Scholar 

  3. D. Nasirian, I. Salahshoori, M. Sadeghi, N. Rashidi, M. Hassanzadeganroudsari, Investigation of the gas permeability properties from polysulfone/polyethylene glycol composite membrane. Polym. Bull. (2019). https://doi.org/10.1007/s00289-019-03031-3

    Article  Google Scholar 

  4. I. Salahshoori, D. Nasirian, N. Rashidi, M.K. Hossain, A. Hatami, M. Hassanzadeganroudsari, The effect of silica nanoparticles on polysulfone–polyethylene glycol (PSF/PEG) composite membrane on gas separation and rheological properties of nanocomposites. Polym. Bull. (2020). https://doi.org/10.1007/s00289-020-03255-8

    Article  Google Scholar 

  5. A. Hatami, I. Salahshoori, N. Rashidi, D. Nasirian, The effect of ZIF-90 particle in Pebax/PSF composite membrane on the transport properties of CO2, CH4 and N2 gases by molecular dynamics simulation method. Chin. J. Chem. Eng. (2019). https://doi.org/10.1016/j.cjche.2019.12.011

    Article  Google Scholar 

  6. S. Mondal, M.K. Purkait, S. De, Emulsion liquid membrane, in Advances in Dye Removal Technologies, ed. by S. Mondal, M.K. Purkait, S. De (Springer, Singapore, 2018), pp. 313–323. https://doi.org/10.1007/978-981-10-6293-3_10

    Chapter  Google Scholar 

  7. A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, B.S. Ooi, Emulsion liquid membrane for heavy metal removal: an overview on emulsion stabilization and destabilization. Chem. Eng. J. 171(3), 870–882 (2011). https://doi.org/10.1016/j.cej.2011.05.102

    Article  CAS  Google Scholar 

  8. M.B. Rosly, N. Jusoh, N. Othman, H.A. Rahman, N.F.M. Noah, R.N.R. Sulaiman, Effect and optimization parameters of phenol removal in emulsion liquid membrane process via fractional-factorial design. Chem. Eng. Res. Des. 145, 268–278 (2019). https://doi.org/10.1016/j.cherd.2019.03.007

    Article  CAS  Google Scholar 

  9. P. Dzygiel, P. Wieczorek, Extraction of amino acids with emulsion liquid membranes using industrial surfactants and lecithin as stabilisers. J. Membr. Sci. 172(1), 223–232 (2000). https://doi.org/10.1016/S0376-7388(00)00330-6

    Article  CAS  Google Scholar 

  10. N. Othman, H. Mat, M. Goto, Separation of silver from photographic wastes by emulsion liquid membrane system. J. Membr. Sci. 282(1), 171–177 (2006). https://doi.org/10.1016/j.memsci.2006.05.020

    Article  CAS  Google Scholar 

  11. A. Kargari, T. Kaghazchi, B. Mardangahi, M. Soleimani, Experimental and modeling of selective separation of gold(III) ions from aqueous solutions by emulsion liquid membrane system. J. Membr. Sci. 279(1), 389–393 (2006). https://doi.org/10.1016/j.memsci.2005.12.027

    Article  CAS  Google Scholar 

  12. H. Valdés, J. Romero, J. Sanchez, S. Bocquet, G.M. Rios, F. Valenzuela, Characterization of chemical kinetics in membrane-based liquid–liquid extraction of molybdenum(VI) from aqueous solutions. Chem. Eng. J. 151(1), 333–341 (2009). https://doi.org/10.1016/j.cej.2009.04.012

    Article  CAS  Google Scholar 

  13. A. Srivastava, A. Bhagat, U. Sharma, R.K. Dohare, K. Singh, S. Upadhyaya, Comparative study of arsenic(V) removal from aqueous solution using Aliquat-336 and 2-ethyl hexanol through emulsion liquid membrane. J. Water Process Eng. 16, 64–68 (2017). https://doi.org/10.1016/j.jwpe.2016.12.007

    Article  Google Scholar 

  14. K. Wongkaew, V. Mohdee, U. Pancharoen, A. Arpornwichanop, A.W. Lothongkum, Separation of platinum(IV) across hollow fiber supported liquid membrane using non-toxic diluents: mass transfer and thermodynamics. J. Ind. Eng. Chem. 54, 278–289 (2017). https://doi.org/10.1016/j.jiec.2017.06.002

    Article  CAS  Google Scholar 

  15. F. Moyo, R. Tandlich, Daphnia pulex toxicity testing of ethylenediaminetetraacetic acid tetrasodium salt dihydrate and the wastewater effluent from extraction of rhodium using emulsion liquid membranes. Int. J. Environ. Res. 8(4), 1019–1026 (2014)

    Google Scholar 

  16. A.L. Ahmad, M.M.H. Shah Buddin, B.S. Ooi, A. Kusumastuti, Utilization of environmentally benign emulsion liquid membrane (ELM) for cadmium extraction from aqueous solution. J. Water Process Eng. 15, 26–30 (2017). https://doi.org/10.1016/j.jwpe.2016.05.010

    Article  Google Scholar 

  17. A. Hachemaoui, K. Belhamel, Simultaneous extraction and separation of cobalt and nickel from chloride solution through emulsion liquid membrane using Cyanex 301 as extractant. Int. J. Miner. Process. 161, 7–12 (2017). https://doi.org/10.1016/j.minpro.2017.02.002

    Article  CAS  Google Scholar 

  18. H. Ma, O. Kökkılıç, K.E. Waters, The use of the emulsion liquid membrane technique to remove copper ions from aqueous systems using statistical experimental design. Miner. Eng. 107, 88–99 (2017). https://doi.org/10.1016/j.mineng.2016.10.014

    Article  CAS  Google Scholar 

  19. M.D. Asl, I. Salahshoori, A. Seyfaee, A. Hatami, A.A. Golbarari, Experimental results and optimization via design of experiment (DOE) of the copper ion recovery from aqueous solutions using emulsion liquid membrane (ELM) method. Desalination and Water Treatment (in press) (2020)

  20. S.S. Kulkarni, V.A. Juvekar, S. Mukhopadhyay, Intensification of emulsion liquid membrane extraction of uranium(VI) by replacing nitric acid with sodium nitrate solution. Chem. Eng. Process. Process Intens. 125, 18–26 (2018). https://doi.org/10.1016/j.cep.2017.12.021

    Article  CAS  Google Scholar 

  21. N.F.M. Noah, N. Othman, N. Jusoh, Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process. J. Taiwan Inst. Chem. Eng. 64, 134–141 (2016). https://doi.org/10.1016/j.jtice.2016.03.047

    Article  CAS  Google Scholar 

  22. A. Choudhury, S. Sengupta, C. Bhattacharjee, S. Datta, Extraction of hexavalent chromium from aqueous stream by emulsion liquid membrane (ELM). Sep. Sci. Technol. 45(2), 178–185 (2010). https://doi.org/10.1080/01496390903409617

    Article  CAS  Google Scholar 

  23. F. Valenzuela, J. Cabrera, C. Basualto, J. Sapag, J. Romero, J. Sánchez, G. Rios, Separation of zinc ions from an acidic mine drainage using a stirred transfer cell-type emulsion liquid membrane contactor. Sep. Sci. Technol. 42(2), 363–377 (2007). https://doi.org/10.1080/01496390601069887

    Article  CAS  Google Scholar 

  24. A. Yadollahi, M. Torab-Mostaedi, K. Saberyan, A. Charkhi, F. Zahakifar, Intensification of zirconium and hafnium separation through the hollow fiber renewal liquid membrane technique using synergistic mixture of TBP and Cyanex-272 as extractant. Chin. J. Chem. Eng. 27(8), 1817–1827 (2019). https://doi.org/10.1016/j.cjche.2018.12.018

    Article  CAS  Google Scholar 

  25. P. Davoodi-Nasab, A. Rahbar-Kelishami, J. Safdari, H. Abolghasemi, Selective separation and enrichment of neodymium and gadolinium by emulsion liquid membrane using a novel extractant CYANEX® 572. Miner. Eng. 117, 63–73 (2018). https://doi.org/10.1016/j.mineng.2017.11.008

    Article  CAS  Google Scholar 

  26. M. Chakraborty, C. Bhattacharya, S. Datta, Emulsion liquid membranes: definitions and classification, theories, module design, applications, new directions and perspectives, in Liquid Membranes, vol. 4, ed. by V.S. Kislik (Elsevier, Amsterdam, 2010), pp. 141–199. https://doi.org/10.1016/B978-0-444-53218-3.00004-0

    Chapter  Google Scholar 

  27. O.I. Lee, The mineralogy of hafnium. Chem. Rev. 5(1), 17–37 (1928)

    Article  CAS  Google Scholar 

  28. C.E. Curtis, Bibliography of hafnium oxide, hafnium silicate and hafnium carbide (Oak Ridge National Lab, Oak Ridge, 1952)

    Book  Google Scholar 

  29. J. van Liempt, Hafnium oxide in tungsten filaments. Nature 115(2884), 194 (1925)

    Article  Google Scholar 

  30. C.M. Swamidoss, D.D. Malkhede, A highly selective liquid–liquid extraction technique for the extraction and separation of hafnium(IV) with hexaacetato calix(6)arene. Orient. J. Chem. 26, 117–122 (2010)

    CAS  Google Scholar 

  31. K. Mimura, K. Matsumoto, M. Isshiki, Purification of hafnium by hydrogen plasma arc melting. Mater. Trans. 52(2), 159–165 (2011)

    Article  CAS  Google Scholar 

  32. S. Shishkin, T. Shishkina, G. Buklanov, S. Dmitriev, G.Y. Starodub, Separation of carrier free 178 W from α-particle activated hafnium with TBP impregnated resin. Czech J. Phys. 53(1), A425–A427 (2003)

    Article  CAS  Google Scholar 

  33. Z.-G. Xu, Y.-K. Wu, J.-D. Zhang, L. Zhang, L.-J. Wang, Equilibrium and kinetic data of adsorption and separation for zirconium and hafnium onto MIBK extraction resin. Trans. Nonferrous Met. Soc. China 20(8), 1527–1533 (2010)

    Article  CAS  Google Scholar 

  34. L. Beer, D. van der Westhuizen, H. Krieg, Solvent extraction and separation of hafnium from zirconium using Ionquest 801. J. South Afr. Inst. Min. Metall. 116, 93–99 (2016). https://doi.org/10.17159/2411-9717/2016/v116n1a14

    Article  CAS  Google Scholar 

  35. B. Nandi, N.R. Das, S.N. Bhattacharyya, Solvent extraction of zirconium and hafnium. Solv. Extr. Ion Exchange 1(1), 141–202 (1983). https://doi.org/10.1080/07366298308918397

    Article  CAS  Google Scholar 

  36. M. Khan, A.A. Ali, Liquid–liquid extraction of Hf(IV) from nitric acid with dibutylsulfoxide in cyclohexane. Radiochim. Acta (2002). https://doi.org/10.1524/ract.2002.90.5_2002.297

    Article  Google Scholar 

  37. A.A. Nayl, Y. El-Nadi, J. Daoud, Extraction and separation of Zr(IV) and Hf(IV) from nitrate medium by some CYANEX extractants. Sep. Sci. Technol. 44, 2956–2970 (2009). https://doi.org/10.1080/01496390903014169

    Article  CAS  Google Scholar 

  38. J. Amaral, C. Morais, Study of zirconium and hafnium separation by solvent extraction technique from nitric and hydrochloric solutions with acid, basic and neutral extractants. World J. Eng. Technol. 04, 138–150 (2016). https://doi.org/10.4236/wjet.2016.43D017

    Article  Google Scholar 

  39. J. Zhao, T. Yang, H. Zhang, G. Sun, Y. Cui, Preferential extraction of hafnium over zirconium with D2EHPA through selective complexation of organic acids. J. Radioanal. Nucl. Chem. 321(1), 333–339 (2019). https://doi.org/10.1007/s10967-019-06585-8

    Article  CAS  Google Scholar 

  40. R. Banda, H.Y. Lee, M.S. Lee, Separation of Zr from Hf in hydrochloric acid solution using amine-based extractants. Ind. Eng. Chem. Res. 51(28), 9652–9660 (2012). https://doi.org/10.1021/ie3008264

    Article  CAS  Google Scholar 

  41. C. Tunsu, Hydrometallurgical recovery of rare earth elements from fluorescent lamp waste fractions. Department of chemistry and chemical engineering, Chalmers University of Technology Gutenburg, Sweden (2016)

  42. Y. Wang, F. Li, Z. Zhao, Y. Dong, X. Sun, The novel extraction process based on CYANEX® 572 for separating heavy rare earths from ion-adsorbed deposit. Sep. Purif. Technol. 151, 303–308 (2015). https://doi.org/10.1016/j.seppur.2015.07.063

    Article  CAS  Google Scholar 

  43. P.S. Kulkarni, V.V. Mahajani, Application of liquid emulsion membrane (LEM) process for enrichment of molybdenum from aqueous solutions. J. Membr. Sci. 201(1), 123–135 (2002). https://doi.org/10.1016/S0376-7388(01)00720-7

    Article  CAS  Google Scholar 

  44. K. Abbassian, A. Kargari, Effect of polymer addition to membrane phase to improve the stability of emulsion liquid membrane for phenol pertraction. Desalin. Water Treat. 57(7), 2942–2951 (2016). https://doi.org/10.1080/19443994.2014.983981

    Article  CAS  Google Scholar 

  45. Y.S. Ng, N.S. Jayakumar, M.A. Hashim, Performance evaluation of organic emulsion liquid membrane on phenol removal. J. Hazard. Mater. 184(1), 255–260 (2010). https://doi.org/10.1016/j.jhazmat.2010.08.030

    Article  CAS  PubMed  Google Scholar 

  46. A. Barkat, B. Khan, A. Naveed, H. Muhammad, H.M.S. Khan, K. Waseem, T. Mahmood, A. Rasul, M. Iqbal, H. Khan, Basics of pharmaceutical emulsions: a review. Afr. J. Pharm. Pharmacol. 525, 2715–2725 (2011). https://doi.org/10.5897/AJPP11.698

    Article  CAS  Google Scholar 

  47. A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, O. Seng, Emulsion liquid membrane for heavy metal removal: an overview on emulsion stabilization and destabilization. Chem. Eng. J. Chem. Eng. J. 171, 870–882 (2011). https://doi.org/10.1016/j.cej.2011.05.102

    Article  CAS  Google Scholar 

  48. S. Gupta, P.B. Khandale, M. Chakraborty, Application of emulsion liquid membrane for the extraction of diclofenac and relationship with the stability of water-in-oil emulsions. J. Dispers. Sci. Technol. (2019). https://doi.org/10.1080/01932691.2019.1579655

    Article  Google Scholar 

  49. Y. Park, Development and optimization of novel emulsion liquid membranes stabilized by non-Newtonian conversion in Taylor-Couette flow for extraction of selected organic and metallic contaminants, Georgia Institute of Technology (2006)

  50. J. Barad, M. Chakraborty, H.-J. Bart, Stability and performance study of water-in-oil-in-water emulsion: extraction of aromatic amines. Ind. Eng. Chem. Res. 49, 5808–5815 (2010). https://doi.org/10.1021/ie901698u

    Article  CAS  Google Scholar 

  51. Y. Park, L.J. Forney, J.H. Kim, A.H.P. Skelland, Optimum emulsion liquid membranes stabilized by non-Newtonian conversion in Taylor–Couette flow. Chem. Eng. Sci. 59(24), 5725–5734 (2004). https://doi.org/10.1016/j.ces.2004.06.015

    Article  CAS  Google Scholar 

  52. A.H.P. Skelland, X. Meng, A new solution to emulsion liquid membrane problems by non-Newtonian conversion. AIChE J. 42(2), 547–561 (1996). https://doi.org/10.1002/aic.690420224

    Article  CAS  Google Scholar 

  53. B. Brugger, W. Richtering, Emulsions stabilized by stimuli-sensitive poly(N-isopropylacrylamide)-co-methacrylic acid polymers: microgels versus low molecular weight polymers. Langmuir ACS J. Surfaces Colloids 24(15), 7769–7777 (2008). https://doi.org/10.1021/la800522h

    Article  CAS  Google Scholar 

  54. S.C. Lee, S.M. Yeo, Role of dilute polymer solution in penicillin G extraction by emulsion liquid membranes. J. Ind. Eng. Chem. 8(2), 114–119 (2002)

    CAS  Google Scholar 

  55. H.R. Mortaheb, M.H. Amini, F. Sadeghian, B. Mokhtarani, H. Daneshyar, Study on a new surfactant for removal of phenol from wastewater by emulsion liquid membrane. J. Hazard. Mater. 160(2–3), 582–588 (2008)

    Article  CAS  Google Scholar 

  56. H.R. Mortaheb, H. Kosuge, B. Mokhtarani, M.H. Amini, H.R. Banihashemi, Study on removal of cadmium from wastewater by emulsion liquid membrane. J. Hazard. Mater. 165(1–3), 630–636 (2009)

    Article  CAS  Google Scholar 

  57. A.H.P. Skelland, X. Meng, Non-Newtonian conversion solves problems of stability, permeability, and swelling in emulsion liquid membranes. J. Membr. Sci. 158(1), 1–15 (1999). https://doi.org/10.1016/S0376-7388(98)00332-9

    Article  CAS  Google Scholar 

  58. F. Nakashio, M. Goto, M. Matsumoto, J. Irie, K. Kondo, Role of surfactants in the behavior of emulsion liquid membranes—development of new surfactants. J. Membr. Sci. 38(3), 249–260 (1988). https://doi.org/10.1016/S0376-7388(00)82423-0

    Article  CAS  Google Scholar 

  59. F. Goodarzi, S. Zendehboudi, A comprehensive review on emulsions and emulsion stability in chemical and energy industries. Can. J. Chem. Eng. 97(1), 281–309 (2019)

    Article  CAS  Google Scholar 

  60. A. Dâas, O. Hamdaoui, Extraction of anionic dye from aqueous solutions by emulsion liquid membrane. J. Hazard. Mater. 178(1–3), 973–981 (2010)

    Article  Google Scholar 

  61. W. Yinhua, X. Zhang, Swelling determination of W/O/W emulsion liquid membranes. J. Membr. Sci. 196, 185–201 (2002). https://doi.org/10.1016/S0376-7388(01)00554-3

    Article  Google Scholar 

  62. A. Dâas, O. Hamdaoui, Extraction of bisphenol A from aqueous solutions by emulsion liquid membrane. J. Membr. Sci. 348(1), 360–368 (2010). https://doi.org/10.1016/j.memsci.2009.11.026

    Article  CAS  Google Scholar 

  63. A.L. Ahmad, M.M.H. Shah Buddin, B.S. Ooi, A. Kusumastuti, Cadmium removal from aqueous solution by emulsion liquid membrane (ELM): influence of emulsion formulation on cadmium removal and emulsion swelling. Desalin. Water Treat. 57(58), 28274–28283 (2016). https://doi.org/10.1080/19443994.2016.1179674

    Article  CAS  Google Scholar 

  64. N. Jusoh, N. Othman, Stability of water-in-oil emulsion in liquid membrane prospect. Malays. J. Fundam. Appl. Sci. (2017). https://doi.org/10.11113/mjfas.v12n3.429

    Article  Google Scholar 

  65. A.L. Ahmad, A. Kusumastuti, C.J.C. Derek, B.S. Ooi, Emulsion liquid membrane for cadmium removal: studies on emulsion diameter and stability. Desalination 287, 30–34 (2012). https://doi.org/10.1016/j.desal.2011.11.002

    Article  CAS  Google Scholar 

  66. S. Laki, A. Bbbbbb, S. Madaeni, M. Niroomanesh, Separation of manganese from aqueous solution using emulsion liquid membrane. RSC Adv. (2015). https://doi.org/10.1039/C5RA08547K

    Article  Google Scholar 

  67. Z.-Y. Ooi, N. Othman, C.-L. Choo, The role of internal droplet size on emulsion stability and the extraction performance of kraft lignin removal from pulping wastewater in emulsion liquid membrane process. J. Dispers. Sci. Technol. 37(4), 544–554 (2016). https://doi.org/10.1080/01932691.2015.1050728

    Article  CAS  Google Scholar 

  68. A. Dâas, O. Hamdaoui, Extraction of bisphenol A from aqueous solutions by emulsion liquid membrane. J. Membr. Sci. 348(1–2), 360–368 (2010)

    Article  Google Scholar 

  69. S.C. Lee, Effect of volume ratio of internal aqueous phase to organic membrane phase (w/o ratio) of water-in-oil emulsion on penicillin G extraction by emulsion liquid membrane. J. Membr. Sci. 163(2), 193–201 (1999). https://doi.org/10.1016/S0376-7388(99)00182-9

    Article  CAS  Google Scholar 

  70. M. Hasan, Y. Selim, K. Mohamed, Removal of chromium from aqueous waste solution using liquid emulsion membrane. J. Hazard. Mater. 168(2–3), 1537–1541 (2009)

    Article  CAS  Google Scholar 

  71. P.S. Kankekar, S.J. Wagh, V.V. Mahajani, Process intensification in extraction by liquid emulsion membrane (LEM) process: a case study; enrichment of ruthenium from lean aqueous solution. Chem. Eng. Process. 49(4), 441–448 (2010). https://doi.org/10.1016/j.cep.2010.02.005

    Article  CAS  Google Scholar 

  72. M.A. Malik, M.A. Hashim, F. Nabi, Extraction of metal ions by ELM separation technology. J. Dispers. Sci. Technol. 33(3), 346–356 (2012). https://doi.org/10.1080/01932691.2011.567148

    Article  CAS  Google Scholar 

  73. Y. Wang, F. Li, Z. Zhao, Y. Dong, X. Sun, The novel extraction process based on CYANEX® 572 for separating heavy rare earths from ion-adsorbed deposit. Sep. Purif. Technol. (2015). https://doi.org/10.1016/j.seppur.2015.07.063

    Article  Google Scholar 

  74. I. Bhatti, K. Qureshi, K.S.N. Kamarudin, A.A. Bazmi, A.W. Bhutto, F. Ahmad, M. Lee, Innovative method to prepare a stable emulsion liquid membrane for high CO2 absorption and its performance evaluation for a natural gas feed in a rotating disk contactor. J. Nat. Gas Sci. Eng. 34, 716–732 (2016)

    Article  CAS  Google Scholar 

  75. I. Torotwa, C. Ji, A study of the mixing performance of different impeller designs in stirred vessels using computational fluid dynamics. Designs 2(1), 10 (2018)

    Article  Google Scholar 

  76. B. Mokhtari, K. Pourabdollah, Inclusion separation of alkali metals in emulsion liquid membranes by nanobaskets of calix [4] crown-3. Braz. J. Chem. Eng. 29(4), 783–793 (2012)

    Article  CAS  Google Scholar 

  77. J. Yan, R. Pal, Isotonic swelling behavior of W/O/W emulsion liquid membranes under agitation conditions. J. Membr. Sci. 213, 1–12 (2003). https://doi.org/10.1016/S0376-7388(02)00501-X

    Article  CAS  Google Scholar 

  78. N. Noah, N.N. Othman, Emulsion stability of palladium extraction containing cyanex 302 as a mobile carrier in emulsion liquid membrane process. Chem. Eng. Trans. 56, 1069–1074 (2017)

    Google Scholar 

  79. L.M. Collins, J.J. Dziak, R. Li, Design of experiments with multiple independent variables: a resource management perspective on complete and reduced factorial designs. Psychol. Methods 14(3), 202 (2009)

    Article  Google Scholar 

  80. J.R. Wagner, E.M. Mount, H.F. Giles, 25-Design of experiments, in Extrusion, 2nd edn., ed. by J.R. Wagner, E.M. Mount, H.F. Giles (William Andrew Publishing, Oxford, 2014), pp. 291–308. https://doi.org/10.1016/B978-1-4377-3481-2.00025-9

    Chapter  Google Scholar 

  81. M.A. Bezerra, R.E. Santelli, E.P. Oliveira, L.S. Villar, L.A. Escaleira, Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5), 965–977 (2008)

    Article  CAS  Google Scholar 

  82. S.C. Ferreira, R. Bruns, H. Ferreira, G. Matos, J. David, G. Brandao, E.P. da Silva, L. Portugal, P. Dos Reis, A. Souza, Box-Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 597(2), 179–186 (2007)

    Article  CAS  Google Scholar 

  83. H. Ahn, Central composite design for the experiments with replicate runs at factorial and axial points, in Industrial Engineering, Management Science and Applications, ed. by M. Gen, K.J. Kim, X. Huang, Y. Hiroshi (Springer, Berlin, 2015), pp. 969–979

    Google Scholar 

  84. P.F. de Aguiar, B. Bourguignon, M.S. Khots, D.L. Massart, R. Phan-Than-Luu, D-optimal designs. Chemometr. Intell. Lab. Syst. 30(2), 199–210 (1995). https://doi.org/10.1016/0169-7439(94)00076-X

    Article  CAS  Google Scholar 

  85. L. St, S. Wold, Analysis of variance (ANOVA). Chemometr. Intell. Lab. Syst. 6(4), 259–272 (1989)

    Article  Google Scholar 

  86. J. Martin, D.D.R. De Adana, A.G. Asuero, Fitting models to data: residual analysis, a primer. Chapter 7, 133 (2017)

    CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thanks the Science and Research Branch of the Islamic Azad University (Tehran SRBIAU) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Salahshoori.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahshoori, I., Hatami, A. & Seyfaee, A. Investigation of experimental results and D-optimal design of hafnium ion extraction from aqueous system using emulsion liquid membrane technique. J IRAN CHEM SOC 18, 87–107 (2021). https://doi.org/10.1007/s13738-020-02007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02007-9

Keywords

Navigation