Skip to main content

Advertisement

Log in

Bond strength evaluation of lithium disilicate and zirconium oxide-based substructures using two different veneering techniques

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

A Correction to this article was published on 15 December 2020

This article has been updated

Abstract

The aim of this study was to evaluate the shear bond strength (SBS) between a substructure and veneer using two different veneering techniques: (i) liner and (ii) liner + dentine powder sprinkling). The first technique simply uses liners that act as bonding layers between the substructure and veneering material; the second technique consists of liners on which there has been dentine powder sprinkled. The SBS tests were performed using a universal testing machine (UTM) and the modes of failure were identified for various samples. The results revealed that the mean SBS of the zirconium oxide (ZrO2) of the sprinkling group was significantly higher (p < 0.001) than that of the ZrO2 without sprinkling group (27.2 ± 3.95 MPa and 22 ± 3.30 MPa, respectively). Likewise, the mean SBS of the lithium disilicate (LDS) with sprinkling group was significantly higher (p < 0.001) than that of the LDS without sprinkling group (33.1 ± 3.24 MPa and 19.9 ± 3.82 MPa, respectively). The ZrO2 samples without sprinkling exhibited a combination of adhesive failure and cohesive failure in the veneer itself, whereas with sprinkling exhibited mostly adhesive failure, not cohesive failure. The LDS samples without sprinkling exhibited all types of failures with predominantly cohesive failure of the core; however, the LDS with sprinkling exhibited commonly the cohesive failure of the core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 15 December 2020

    A Correction to this paper has been published: <ExternalRef><RefSource>https://doi.org/10.1007/s41779-020-00546-1</RefSource><RefTarget Address="10.1007/s41779-020-00546-1" TargetType="DOI"/></ExternalRef>

References

  1. Beuer, F., Schweiger, J., Eichberger, M., Kappert, H.F., Gernet, W., Edelhoff, D.: High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings—a new fabrication mode for all-ceramic restorations. Dent. Mater. 25(1), 121–128 (2009)

    Article  CAS  Google Scholar 

  2. Cetik, S., Vincent, M., Atash, R.: Effect of cosmetic ceramics on fracture toughness of all-ceramic restorations. J. Dent. (Tehran, Iran). 15(3), 137 (2018)

    Google Scholar 

  3. Aboushelib, M.N., Feilzer, A.J., Kleverlaan, C.J.: Bridging the gap between clinical failure and laboratory fracture strength tests using a fractographic approach. Dent Mater. 25(3), 383–391 (2009)

    Article  CAS  Google Scholar 

  4. Shehata, W.K., Aziz, A.E., El-Naggar, G.A., Abdel Ghany, O.S.: Effect of sandblasting and zirconia primer application on the zirconia-cement shear bond strength (an in-vitro study). Al-Azhar Dent. J. Girls. 5(2), 187–194 (2018)

    Article  Google Scholar 

  5. Aboushelib, M.N., De Jager, N., Kleverlaan, C.J., Feilzer, A.J.: Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent. Mater. 21(10), 984–991 (2005)

    Article  CAS  Google Scholar 

  6. Aboushelib, M.N., Kleverlaan, C.J., Feilzer, A.J.: Microtensile bond strength of different components of core veneered all-ceramic restorations: part II: zirconia veneering ceramics. Dent. Mater. 22(9), 857–863 (2006)

    Article  CAS  Google Scholar 

  7. Guazzato, M., Proos, K., Quach, L., Swain, M.V.: Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials. 25(20), 5045–5052 (2004)

    Article  CAS  Google Scholar 

  8. Tsalouchou, E., Cattell, M.J., Knowles, J.C., Pittayachawan, P., McDonald, A.: Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dent. Mater. 24(3), 308–318 (2008). https://doi.org/10.1016/j.dental.2007.05.011

    Article  CAS  Google Scholar 

  9. Al-Dohan, H.M., Yaman, P., Dennison, J.B., Razzoog, M.E., Lang, B.R.: Shear strength of core-veneer interface in bi-layered ceramics. J. Prosthet. Dent. 91(4), 349–355 (2004). https://doi.org/10.1016/j.prosdent.2004.02.009

    Article  CAS  Google Scholar 

  10. Ishibe, M., Raigrodski, A.J., Flinn, B.D., Chung, K.-H., Spiekerman, C., Winter, R.R.: Shear bond strengths of pressed and layered veneering ceramics to high-noble alloy and zirconia cores. J. Prosthet. Dent. 106(1), 29–37 (2011)

    Article  CAS  Google Scholar 

  11. Albakry, M., Guazzato, M., Swain, M.V.: Fracture toughness and hardness evaluation of three pressable all-ceramic dental materials. J. Dent. 31(3), 181–188 (2003). https://doi.org/10.1016/s0300-5712(03)00025-3

    Article  CAS  Google Scholar 

  12. Benetti, P., Della Bona, A., Kelly, J.R.: Evaluation of thermal compatibility between core and veneer dental ceramics using shear bond strength test and contact angle measurement. Dent. Mater. 26(8), 743–750 (2010). https://doi.org/10.1016/j.dental.2010.03.019

    Article  CAS  Google Scholar 

  13. Guess, P.C., Kulis, A., Witkowski, S., Wolkewitz, M., Zhang, Y., Strub, J.R.: Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent. Mater. 24(11), 1556–1567 (2008). https://doi.org/10.1016/j.dental.2008.03.028

    Article  CAS  Google Scholar 

  14. Aboushelib, M.N., Kleverlaan, C.J., Feilzer, A.J.: Effect of zirconia type on its bond strength with different veneer ceramics. J. Prosthodont. 17(5), 401–408 (2008). https://doi.org/10.1111/j.1532-849X.2008.00306.x

    Article  Google Scholar 

  15. Kim, S.-H., Park, C.-J., Cho, L.-R., Huh, Y.-H.: Evaluation of the ceramic liner bonding effect between zirconia and lithium disilicate. J. Prosthet. Dent. 120(2), 282–289 (2018). https://doi.org/10.1016/j.prosdent.2017.10.022

    Article  CAS  Google Scholar 

  16. Lee, Y.H., Park, C.J., Cho, L.R., Ko, K.H., Huh, Y.H.: Effects of lithium and phosphorus on the efficacy of a liner for increasing the shear bond strength between lithium disilicate and zirconia. J. Adhes. Dent. 20(6), 535–540 (2018). https://doi.org/10.3290/j.jad.a41629

    Article  Google Scholar 

  17. Tholey, M.J., Just, B.A., Fischer, J.: Effect of surface treatment on the roughness of all-ceramic materials. Dent. Mater. 31, e5 (2015). https://doi.org/10.1016/j.dental.2015.08.011

    Article  Google Scholar 

  18. Wattanasirmkit, K., Srimaneepong, V., Kanchanatawewat, K., Monmaturapoj, N., Thunyakitpisal, P., Jinawath, S.: Improving shear bond strength between feldspathic porcelain and zirconia substructure with lithium disilicate glass-ceramic liner. Dent. Mater. J. 34(3), 302–309 (2015). https://doi.org/10.4012/dmj.2014-319

    Article  CAS  Google Scholar 

  19. Durand, J.-C., Jacquot, B., Salehi, H., Margerit, J., Cuisinier, F.J.G.: Confocal Raman microscopy and SEM/EDS investigations of the interface between the zirconia core and veneering ceramic: the influence of a liner and regeneration firing. J. Mater. Sci. Mater. Med. 23(6), 1343–1353 (2012). https://doi.org/10.1007/s10856-012-4616-4

    Article  CAS  Google Scholar 

  20. Kim, H.-J., Lim, H.-P., Park, Y.-J., Vang, M.-S.: Effect of zirconia surface treatments on the shear bond strength of veneering ceramic. J. Prosthet. Dent. 105(5), 315–322 (2011). https://doi.org/10.1016/s0022-3913(11)60060-7

    Article  CAS  Google Scholar 

  21. Zaher, A.M., Hochstedler, J.L., Rueggeberg, F.A., Kee, E.L.: Shear bond strength of zirconia-based ceramics veneered with 2 different techniques. J. Prosthet. Dent. 118(2), 221–227 (2017). https://doi.org/10.1016/j.prosdent.2016.11.016

    Article  CAS  Google Scholar 

  22. Oladapo, B.I., Abolfazl Zahedi, S., Vahidnia, F., Ikumapayi, O.M., Farooq, M.U.: Three-dimensional finite element analysis of a porcelain crowned tooth. Beni-Suef Univ. J. Basic Appl. Sci. 7(4), 461–464 (2018). https://doi.org/10.1016/j.bjbas.2018.04.002

    Article  Google Scholar 

  23. Cevik, P., Cengiz, D., Malkoc, M.A.: Bond strength of veneering porcelain to zirconia after different surface treatments. J. Adhes. Sci. Technol. 30(22), 2466–2476 (2016). https://doi.org/10.1080/01694243.2016.1184779

    Article  CAS  Google Scholar 

  24. Kosmac, T., Oblak, C., Jevnikar, P., Funduk, N., Marion, L.: The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent. Mater. 15(6), 426–433 (1999). https://doi.org/10.1016/s0109-5641(99)00070-6

    Article  CAS  Google Scholar 

  25. Thompson, J.Y., Stoner, B.R., Piascik, J.R., Smith, R.: Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now? Dent. Mater. 27(1), 71–82 (2011). https://doi.org/10.1016/j.dental.2010.10.022

    Article  CAS  Google Scholar 

  26. Fischer, J., Grohmann, P., Stawarczyk, B.: Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent. Mater. J. 27(3), 448–454 (2008)

    Article  Google Scholar 

  27. Wolfart, M., Lehmann, F., Wolfart, S., Kern, M.: Durability of the resin bond strength to zirconia ceramic after using different surface conditioning methods. Dent. Mater. 23(1), 45–50 (2007). https://doi.org/10.1016/j.dental.2005.11.040

    Article  CAS  Google Scholar 

  28. Harding, A.B., Norling, B.K., Teixeira, E.C.: The effect of surface treatment of the interfacial surface on fatigue-related microtensile bond strength of milled zirconia to veneering porcelain. J. Prosthodont. Implant Esthetic Reconstruct. Dent. 21(5), 346–352 (2012). https://doi.org/10.1111/j.1532-849X.2012.00843.x

    Article  Google Scholar 

  29. Abdullah, A.O., Muhammed, F.K., Yu, H., Pollington, S., Xudong, S., Liu, Y.: The impact of laser scanning on zirconia coating and shear bond strength using veneer ceramic material. Dent. Mater. J. (2019). https://doi.org/10.4012/dmj.2018-091

  30. de Mello, C.C., Bitencourt, S.B., dos Santos, D.M., Pesqueira, A.A., Pellizzer, E.P., Goiato, M.C.: The effect of surface treatment on shear bond strength between Y-TZP and veneer ceramic: a systematic review and meta-analysis. J. Prosthodont. Implant Esthetic Reconstruct. Dent. 27(7), 624–635 (2018). https://doi.org/10.1111/jopr.12727

    Article  Google Scholar 

  31. Dimitriou, A., Hale, M.D., Spear, M.J.: The effect of four methods of surface activation for improved adhesion of wood polymer composites (WPCs). Int. J. Adhes. Adhes. 68, 188–194 (2016). https://doi.org/10.1016/j.ijadhadh.2016.03.003

    Article  CAS  Google Scholar 

  32. Luthardt, R.G., Holzhuter, M., Sandkuhl, O., Herold, V., Schnapp, J.D., Kuhlisch, E., Walter, M.: Reliability and properties of ground Y-TZP-zirconia ceramics. J. Dent. Res. 81(7), 487–491 (2002). https://doi.org/10.1177/154405910208100711

    Article  CAS  Google Scholar 

  33. Zhang, Y., Lawn, B.: Long-term strength of ceramics for biomedical applications. J. Biomed. Mater. Res. B Appl. Biomater. 69(2), 166–172 (2004). https://doi.org/10.1002/jbm.b.20039

    Article  CAS  Google Scholar 

  34. Della Bona, A., Kelly, J.R.: The clinical success of all-ceramic restorations. J. Am. Dent. Assoc. 139(Suppl), 8s–13s (2008). https://doi.org/10.14219/jada.archive.2008.0361

    Article  Google Scholar 

  35. Vult von Steyern, P., Ebbesson, S., Holmgren, J., Haag, P., Nilner, K.: Fracture strength of two oxide ceramic crown systems after cyclic pre-loading and thermocycling. J Oral Rehabil. 33(9), 682–689 (2006). doi:https://doi.org/10.1111/j.1365-2842.2005.01604.x

  36. Sailer, I., Feher, A., Filser, F., Gauckler, L.J., Luthy, H., Hammerle, C.H.: Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int. J. Prosthodont. 20(4), 383–388 (2007)

    Google Scholar 

  37. Sailer, I., Feher, A., Filser, F., Luthy, H., Gauckler, L.J., Scharer, P., Franz Hammerle, C.H.: Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int. 37(9), 685–693 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs, Engr. Abdullah Bugshan research chair for Dental and Oral Rehabilitation (DOR).

Funding

This research work was funded by Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs, Engr. Abdullah Bugshan research chair for Dental and Oral Rehabilitation (DOR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Alrahlah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlOmary, A., AlHabbad, F., Gomawi, A. et al. Bond strength evaluation of lithium disilicate and zirconium oxide-based substructures using two different veneering techniques. J Aust Ceram Soc 57, 1–7 (2021). https://doi.org/10.1007/s41779-020-00505-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-020-00505-w

Keywords

Navigation