Skip to main content
Log in

The use of porphyrins in potentiometric sensors as ionophores

  • Review Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Porphyrins are a group of macrocyclic compounds which are widely used in many applications in the literature due to their multiple functions. One of their application areas is in the development of sensors which transform changes in physical and chemical parameters into electrical signals. Novel chemical sensors selective and sensitive for many anions and cations have been fabricated with the advancements in the technology. Real sample applications of these sensors can be successfully performed. In recent years, potentiometric methods have drawn researchers' attention and they have been highly studied because of their superiority over other analytical devices. Ionophores which are used in the development of potentiometric sensors and ion-selective electrodes are the most important components of these systems. Therefore, porphyrin molecules, which have favorable chemical structures, can be directly used as an active component (ionophore) in the structure of potentiometric sensors. In this review, we investigated porphyrin derivatives used as ionophore in the design of potentiometric sensors and we focused on newly developed potentiometric sensors based on porphyrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rothemund, P.: A new porphyrin synthesis. The synthesis of porphin. J. Am. Chem. Soc. 58, 625–627 (1936)

    CAS  Google Scholar 

  2. Temelli, B., Unaleroglu, C.: Synthesis of meso-tetraphenyl porphyrins via condensation of dipyrromethanes with N-tosyl imines. Tetrahedron 6, 2043–2050 (2009)

    Google Scholar 

  3. Zhao, L., Zhao, Y., Li, R., Wu, D., Xu, R., Li, S., Zhang, Y., Ye, H., Xin, Q.: A porphyrin-based optical sensor membrane prepared by electrostatic self-assembled technique for online detection of cadmium(II). Chemosphere 238, 24552–24560 (2020)

    Google Scholar 

  4. Shamsipur, M., Sadeghi, M., Beyzavi, M.H., Sharghi, H.: Development of a novelfluorimetric bulk optode membrane based on meso-tetrakis(2-hydroxynaphthyl) porphyrin (MTHNP) for highly sensitive and selectivemonitoring of trace amounts of Hg2+ ions. Mater. Sci. Eng. C 48, 424–433 (2015)

    CAS  Google Scholar 

  5. Huang, D., Li, X., Chen, M., Chen, F., Wan, Z., Rui, R., Wang, R., Fan, S., Wu, H.: An electrochemical sensor based on a porphyrin dye-functionalized multiwalled carbon nanotubes hybrid for the sensitive determination of ascorbic acid. J. Electroanal. Chem. 841, 101–106 (2019)

    CAS  Google Scholar 

  6. Imran, M., Ramzan, M., Qureshi, A.K., Khan, M.A., Tariq, M.: Emerging applications of porphyrins and metalloporphyrins in biomedicine and diagnostic magnetic resonance imaging. Biosensors 8, 95–112 (2018)

    CAS  PubMed Central  Google Scholar 

  7. Isildak, Ö., Özbek, O.: Application of potentiometric sensors in real samples. Crit. Rev. Anal. Chem. (2020). https://doi.org/10.1080/10408347.2019.1711013

    Article  PubMed  Google Scholar 

  8. Bakker, E.: Electrochemical Sensors. Anal. Chem. 76, 3285–3298 (2004)

    CAS  PubMed  Google Scholar 

  9. Cremer, M.Z.: Origin of electromotor properties of tissues, and instructional contribution for polyphasic electrolyte chain. Z. Für. Biol. 47, 562–608 (1906)

    CAS  Google Scholar 

  10. Omran, O.A., Elgendy, F.A., Nafady, A.: Fabrication and applications of potentiometric sensors based on p-tert-butylthiacalix[4]arene comprising two triazole rings ionophore for silver ion detection. Int. J. Electrochem. Sci. 11, 4729–4742 (2016)

    CAS  Google Scholar 

  11. Isildak, Ö., Özbek, O., Yigit, K.M.: Zinc(II)-selective PVC membrane potentiometric sensor for analysis of Zn2+ in drug sample and different environmental samples. Int. J. Environ. Anal. Chem. (2019). https://doi.org/10.1080/03067319.2019.1691542

    Article  Google Scholar 

  12. Isildak, Ö., Deligönül, N., Özbek, O.: A novel silver(I)-selective PVC membrane sensor and its potentiometric applications. Turk. J. Chem. 43, 1149–1158 (2019)

    CAS  Google Scholar 

  13. Onder, A., Topcu, C., Coldur, F.: Construction of a novel highly selective potentiometric perchlorate sensor based on neocuproine–Cu(II) complex formed in situ during the conditioning period. Chemija 29, 57–66 (2018)

    CAS  Google Scholar 

  14. Isildak, Ö., Özbek, O., Gürdere, M.B., Çetin, A.: Development of PVC membrane potentiometric sensor for the determination of potassium ion and its applications. Pamukkale Univ. Muh. Bilim. Derg. (2020). https://doi.org/10.5505/pajes.2020.27982

    Article  Google Scholar 

  15. Jiang, C., Yao, Y., Cai, Y., Ping, J.: All-solid-state potentiometric sensor using single-walled carbon nanohorns as transducer. Sens. Actuators B 283, 284–289 (2019)

    CAS  Google Scholar 

  16. Magna, G., Dinc Zor, S., Catini, A., Capuano, R., Basoli, F., Martinelli, E., Paolesse, R., Di Natale, C.: Surface arrangement dependent selectivity of porphyrins gas sensors. Sens. Actuators B 251, 524–532 (2017)

    CAS  Google Scholar 

  17. Zetola, N.M., Modongo, C., Mathlagela, K., Sepako, E., Matsiri, O., Tamuhla, T., Mbongwe, B., Martinelli, E., Sirugo, G., Paolesse, R., Di Natale, C.: Identification of a large pool of microorganisms with an array of porphyrin based gas sensors. Sensors 16, 466 (2016)

    PubMed  Google Scholar 

  18. Capuano, R., Pomarico, G., Paolesse, R., Di Natale, C.: Corroles-porphyrins: a teamwork for gas sensor arrays. Sensors 15, 8121–8130 (2015)

    CAS  PubMed  Google Scholar 

  19. Isildak, O., Özbek, O.: Silver(I)-selective PVC membrane potentiometric sensor based on 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphine and potentiometric applications. J. Chem. Sci. 32, 29 (2020)

    Google Scholar 

  20. Evyapan, M., Dunbar, A.D.F.: Controlling surface adsorption to enhance the selectivity of porphyrinbased gas sensors. Appl. Surf. Sci. 362, 191–201 (2016)

    CAS  Google Scholar 

  21. Gupta, V.K., Jain, A.K., Maheshwari, G., Lang, H., Ishtaiwi, Z.: Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sens. Actuators B 117, 99–106 (2006)

    CAS  Google Scholar 

  22. Gupta, V.K., Chauhan, C., Saini, V.K., Agarwal, S., Antonijevic, M.M., Lang, H.: A porphyrin based potentiometric sensor for Zn2+ determination. Sensors 3, 223–235 (2003)

    CAS  Google Scholar 

  23. Vlassici, D., Fagadar-Cosma, E., Popa, I., Chiriac, V., Gil-Agusti, M.: A novel sensor for monitoring of iron(III) ions based on porphyrins. Sensors 12, 8193–8203 (2012)

    Google Scholar 

  24. Vlassici, D., Popa, I., Chiriac, V.A., Fagadar-Cosma, G., Popovici, H., Fagadar-Cosma, E.: Potentiometric detection and removal of copper using porphyrins. Chem. Cent. J. 7, 111–118 (2013)

    Google Scholar 

  25. Fakhari, A.R., Alaghemand, M., Shamsipur, M.: Iron(III)-selective membrane potentiometric sensor based on 5,10,15,20-tetrakis-(pentafluorophenyl)-21H,23H-porphyrin. Anal. Lett. 34, 1097–1106 (2001)

    CAS  Google Scholar 

  26. Farahani, N., Aghaie, H.: Fe (II) ion-selective membrane electrode based on tetra-phenyl porphyrin in PVC matrix. J. Phys. Theor. Chem. IAU Iran 5, 137–142 (2008)

    Google Scholar 

  27. Ardakani, M.M., Dehghani, H., Jalayer, M., Zare, H.R.: Potentiometric determination of silver(I) by selective membrane electrode based on derivative of porphyrin. Anal. Sci. 20, 1667–1672 (2004)

    Google Scholar 

  28. Rajabi, H.R., Zarezadeh, A., Karimipour, G.: Porphyrin based nano-sized imprinted polymer as an efficient modifier for the design of a potentiometric copper carbon paste electrode. RSC Adv. 7, 14923–14931 (2017)

    CAS  Google Scholar 

  29. Sun, C., Zhao, J., Xu, H., Sun, Y., Zhang, X., Shen, J.: Fabrication of a multilayer film electrode containing porphyrin and its application as a potentiometric sensor of iodide ion. Talanta 46, 15–21 (1998)

    CAS  PubMed  Google Scholar 

  30. Vlassici, D., Fagadar-Cosma, E., Pica, E.M., Cosma, V., Bizerea, O., Mihailescu, G., Olenic, L.: Free base porphyrins as ionophores for heavy metal sensors. Sensors 8, 4995–5004 (2008)

    Google Scholar 

  31. Fakhari, A.R., Shamsipur, M., Ghanbari, Kh: Zn(II)-selective membrane electrode based on tetra(2-aminophenyl) porphyrin. Anal. Chim. Acta 460, 177–183 (2002)

    CAS  Google Scholar 

  32. Vlassici, D., Plesu, N., Fagadar-Cosma, G., Lascu, A., Petric, M., Crisan, M., Belean, A., Fagadar-Cosma, E.: Potentiometric sensors for iodide and bromide based on Pt(II)-porphyrin. Sensors 18, 1–18 (2018)

    Google Scholar 

  33. Singh, L.P., Bhatnagar, J.M.: PVC based selective sensors for Ni2+ ions using carboxylated and methylated porphine. Sensors 3, 393–403 (2003)

    CAS  Google Scholar 

  34. Vlassici, D., Pruneanu, S., Olenic, L., Pogacean, F., Ostafe, V., Chiriac, V., Pica, E.M., Bolundut, L.C., Nica, L.A., Fagadar-Cosma, E.: Manganese(III) porphyrin-based potentiometric sensors for diclofenac assay in pharmaceutical preparations. Sensors 10, 8850–8864 (2010)

    Google Scholar 

  35. Park, J.M., Lee, J.H., Jang, W.-D.: Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 407, 213157 (2020)

    CAS  Google Scholar 

  36. Huang, H., Song, W., Rieffel, J., Lovell, J.F.: Emerging applications of porphyrins in photomedicine. Front. Phys. 3, 23 (2015)

    PubMed  PubMed Central  Google Scholar 

  37. Guo, X.M., Guo, B., Li, C., Wang, Y.L.: Amperometric highly sensitive uric acid sensor based on manganese(III)porphyrin-graphene modified glassy carbon electrode. J. Electroanal. Chem. 783, 8–14 (2016)

    CAS  Google Scholar 

  38. Gong, F.-C., Zhang, X.-B., Guo, C.-C., Shen, G.-L., Yu, R.-Q.: Amperometric metronidazole sensor based on the supermolecular recognition by metalloporphyrin incorporated in carbon paste electrode. Sensors 3, 91–100 (2003)

    CAS  Google Scholar 

  39. Silva, M.M., Riberio, G.H., Batista, A.A., Faria, A.M., Bogadoa, A.L., Dinelli, L.R.: Electropolymerized supramolecular tetraruthenated porphyrins applied as a voltammetric sensor. J. Braz. Chem. Soc. 24, 1772–1780 (2013)

    Google Scholar 

  40. Tian, L., Wang, B., Chen, R., Gao, Y., Chen, Y., Li, T.: Determination of quercetin using a photo-electrochemical sensor modified with titanium dioxide and a platinum(II)-porphyrin complex. Microchim. Acta 182, 687–693 (2015)

    CAS  Google Scholar 

  41. Cheng, F., Wu, X., Liu, M., Lon, Y., Chen, G., Zeng, R.: A porphyrin-based near-infrared fluorescent sensor for sulfur iondetection and its application in living cells. Sens. Actuators B 228, 673–678 (2016)

    CAS  Google Scholar 

  42. Zhang, M., Li, J.: Synthesis and characterization of a novel porphyrin derivative for optical sensor. Mater Lett. 247, 119–121 (2019)

    CAS  Google Scholar 

  43. Zhao, L., Zhao, Y., Li, R., Wu, D., Xu, R., Li, S., Zhang, Y., Ye, H., Xin, Q.: porphyrin-based optical sensor membrane prepared by electrostatic self-assembled technique for online detection of cadmium(II). Chemosphere 238, 124552 (2020)

    CAS  PubMed  Google Scholar 

  44. Carballo, R., Rinaldi, A.L., Rezzano, I.N.: Electrochemical study of azide bridged heterobimetallic films of porphyrins: Application as an impedimetric sensor. Electrochim. Acta 222, 1700–1708 (2016)

    CAS  Google Scholar 

  45. Hsine, Z., Bizid, S., Zahou, I., Ben Haj Hassen, L., Nasri, H., Mlika, R.: A highly sensitive impedimetric sensor based on iron (III) porphyrin and thermally reduced graphene oxide for detection of Bisphenol A. Synth. Met. 244, 27–25 (2018)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oguz Özbek, Ömer Isildak or Caglar Berkel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özbek, O., Isildak, Ö. & Berkel, C. The use of porphyrins in potentiometric sensors as ionophores. J Incl Phenom Macrocycl Chem 98, 1–9 (2020). https://doi.org/10.1007/s10847-020-01004-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-020-01004-y

Keywords

Navigation