Skip to main content
Log in

On Benjamini-Schramm limits of congruence subgroups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A sequence of orbifolds corresponding to pairwise non-conjugate congruence lattices in a higher rank semisimple group over zero characteristic local fields is Benjamini-Schramm convergent to the universal cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abert, N. Bergeron, I. Biringer, T. Geländer, N. Nikolov, J. Raimbault and I. Samet, On the growth of L2-invariants for sequences of lattices in Lie groups, Annals of Mathematics 185 (2017), 711–790.

    MathSciNet  MATH  Google Scholar 

  2. P. Abramenko and K. S. Brown, Buildings, Graduate Texts in Mathematics, Vol. 248, Springer, New York, 2008.

    MATH  Google Scholar 

  3. U. Bader and Y. Shalom, Factor and normal subgroup theorems for lattices in products of groups, Inventiones mathematicae 163 (2006), 415–454.

    MathSciNet  MATH  Google Scholar 

  4. B. Bekka, P. de La Harpe and A. Valette, Kazhdan’s Property (T), New Mathematical Monographs, Vol. 11, Cambridge university press, Cambridge, 2008.

    MATH  Google Scholar 

  5. A. Borel, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 126, Springer, New York, 1991.

    MATH  Google Scholar 

  6. M. Burger and P. Sarnak, Ramanujan duals II, Inventiones mathematicae 106 (1991), 1–11.

    MathSciNet  MATH  Google Scholar 

  7. L. Clozel, Démonstration de la conjecture τ, Inventiones mathematicae 151 (2003), 297–328.

    MathSciNet  MATH  Google Scholar 

  8. L. Clozel and E. Ullmo, Equidistribution des points de Hecke, in Contributions to Automorphic Forms, Geometry, and Number Theory, Johns Hopkins University Press, Baltimore, MD, 2004, pp. 193–254.

    Google Scholar 

  9. D. Creutz, Stabilizers of actions of lattices in products of groups, Ergodic Theory and Dynamical Systems 37 (2017), 1133–1186.

    MathSciNet  MATH  Google Scholar 

  10. M. Fraczyk, Strong limit multiplicity for arithmetic hyperbolic surfaces and 3-manifolds, https://arxiv.org/abs/1612.05354.

  11. T. Gelander, A lecture on invariant random subgroups, in New Directions in Locally Compact Groups, London Mathematical Society Lecture Note Series, Vol. 447, Cambridge University Press, Cambridge, 2018, pp. 186–204.

    Google Scholar 

  12. T. Gelander and A. Levit, Invariant random subgroups over non-archimedean local fields, Mathematische Annalen 372 (2018), 1503–1544.

    MathSciNet  MATH  Google Scholar 

  13. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Annales scientifiques de l’Ecole Normale Supérieure, 11 (1978), 471–542.

    MathSciNet  MATH  Google Scholar 

  14. N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Insitut des Hautes Études Scientifiques. Publications Mathématiques 25 (1965), 5–48.

    MathSciNet  MATH  Google Scholar 

  15. A. W. Knapp, Lie Groups Beyond an Introduction, Progress in Mathematics, Vol. 140, Birkhäuser, Boston, MA, 2002.

    MATH  Google Scholar 

  16. A. Levit, The Nevo-Zimmer intermediate factor theorem over local fields, Geometriae Dedicata 186 (2017), 149–171.

    MathSciNet  MATH  Google Scholar 

  17. A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures, Modern Birkhäuser Classics, Birkhäuser, Basel, 2010.

    MATH  Google Scholar 

  18. A. Lubotzky and A. Zuk, On property (τ), Notices of the American Mathematical Society 52 (2005), 626–627.

    MathSciNet  Google Scholar 

  19. G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 17, Springer, Berlin, 1991.

    MATH  Google Scholar 

  20. V. P. Platonov and A. S. Rapinchuk, Algebraic groups and number theory, Russian Mathematical Surveys 47 (1992), 133–161.

    MATH  Google Scholar 

  21. J. Raimbault, On the convergence of arithmetic orbifolds, Universitedé Grenoble. Annales de l’Institut Fourier 67 (2017), 2547–2596.

    MathSciNet  MATH  Google Scholar 

  22. A. Selberg, On the estimation of fourier coefficients of modular forms, Proceedings of Symposia in Pure Mathematics, Vol. 8, American Mathematical Society, Providence, RI, 1965, pp. 1–15.

    MATH  Google Scholar 

  23. J.-P. Serre, Le probleme des groupes de congruence pour SL2, Annals of Mathematics 92 (1970), 489–527.

    MathSciNet  MATH  Google Scholar 

  24. G. Stuck and R. J. Zimmer, Stabilizers for ergodic actions of higher rank semisimple groups, Annals of Mathematics 139 (1994), 723–747.

    MathSciNet  MATH  Google Scholar 

  25. M.-F. Vignéras, Quelques remarques sur la conjecture λ1 ≥ 1/4, in Seminar on number theory, Paris 1981-82, Progress in Mathematics, Vol. 38, Birkhäuser, Boston, MA, 1983, pp. 321–343.

    Google Scholar 

  26. R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, Vol. 81, Birkhäuser, Basel, 1984.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arie Levit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levit, A. On Benjamini-Schramm limits of congruence subgroups. Isr. J. Math. 239, 59–73 (2020). https://doi.org/10.1007/s11856-020-2043-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-020-2043-7

Navigation